Role of satellite valleys in ionisation rate enhancement in multiple quantum well avalanche photodiodes

Access Full Text

Role of satellite valleys in ionisation rate enhancement in multiple quantum well avalanche photodiodes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The enhancement of the electron ionisation rate in multiple quantum well avalanche photodiodes is determined by the band offsets in the satellite valleys rather than the Γ valley as previously assumed for semiconductors where the threshold field for the Gunn effect is less than that for impact ionisation. Monte Carlo calculations in a model GaAs/Al0.45Ga0.55As heterostructure show no enhancement caused by the band offsets.

Inspec keywords: gallium arsenide; semiconductor quantum wells; avalanche photodiodes; Monte Carlo methods; III-V semiconductors; aluminium compounds

Other keywords: Gunn effect threshold field; Monte Carlo calculations; ionisation rate enhancement; satellite valleys role; GaAs-Al0.45Ga0.55As; multiple quantum well avalanche photodiodes; APD; band offsets; semiconductors; impact ionisation threshold field; electron ionisation rate

Subjects: II-VI and III-V semiconductors; Photoelectric devices; Semiconductor junctions; Monte Carlo methods

References

    1. 1)
      • K. Brennan . Theory of electron and hole impact ionisation in quantum well and staircase superlattice avalanche photodiode structures. IEEE Trans. Electron Devices , 2197 - 2205
    2. 2)
      • R.J. Mcintyre . Multiplication noise in uniform avalanche photodiodes. IEEE Trans. , 164 - 167
    3. 3)
      • G.E. Bulman , V.M. Robbins , K.F. Brennan , K. Hess , G.E. Stillman . Experimental determination of impact ionisation coefficients in (100) GaAs. IEEE Electron Device Lett. , 181 - 185
    4. 4)
      • D.J. Wolford , T.F. Kuech , J.A. Bradley , M.A. Gell , D. Ninno , M. Jaros . Pressure dependence of GaAs/AlxGa1−xAs quantum-well bound states: The determination of valence-band offsets. J. Vac. Sci. Technol. , 1043 - 1050
    5. 5)
      • B.K. Ridley . Factors affecting impact ionisation in multilayer avalanche photodiodes. IEE Proc. J , 177 - 183
    6. 6)
      • K. Brennan , K. Hess , F. Capasso . Physics of the enhancement of impact ionisation in multiquantum well structures. Appl. Phys. Lett. , 1897 - 1899
    7. 7)
      • R. Chin , N. Holonyak , G.E. Stillman , J.Y. Tang , K. Hess . Impact ionisation in multilayered heterojunction structures. Electron. Lett. , 467 - 469
    8. 8)
      • F. Capasso , W.T. Tsang , A.L. Hutchinson , G.F. Williams . Enhancement of electron impact ionisation in a superlattice: a new avalanche photodiode with a large ionisation rate ratio. Appl. Phys. Lett. , 38 - 40
    9. 9)
      • S. Adachi . GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications. J. Appl. Phys. , R1 - R29
    10. 10)
      • M.A. Littlejohn , J.R. Hauser , T.H. Glisson . Velocity-field characteristics of GaAs with Γ6c − L6c − X6c conduction-band ordering. J. Appl. Phys. , 4587 - 4590
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19900843
Loading

Related content

content/journals/10.1049/el_19900843
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading