Novel gate voltage ramping technique for the characterisation of metal-oxide-semiconductor capacitor charge trapping properties

Access Full Text

Novel gate voltage ramping technique for the characterisation of metal-oxide-semiconductor capacitor charge trapping properties

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel technique is proposed to characterise the charge trapping properties of MOS capacitors by using the gate voltage ramping test. The parameter I=1−Ig(t)/Is(t + Δt) measured during gate voltage ramping reveals the dielectric charge trapping characteristics. Positive charge trapping before dielectric breakdown was observed using this technique. A comparison between I and flatband voltage shift, ΔVfb, indicates that I gives the same information as ΔVfb does at high stress fluences.

Inspec keywords: capacitors; electron energy states of amorphous solids; metal-insulator-semiconductor devices

Other keywords: dielectric charge trapping characteristics; gate voltage ramping technique; flatband voltage shift; gate voltage ramping test; charge trapping properties of MOS capacitors

Subjects: Capacitors; Metal-insulator-semiconductor structures; Electronic structure of amorphous and glassy solids; Insulated gate field effect transistors; Electrical properties of metal-insulator-semiconductor structures

References

    1. 1)
      • E. Harari . J. Appl. Phys.. J. Appl. Phys.
    2. 2)
      • J.J. O'Dwyer . J. Appl. Phys.. J. Appl. Phys.
    3. 3)
      • T.H. Distefno , M. Shatzkes . Appl. Phys. Lett.. Appl. Phys. Lett.
    4. 4)
      • N. Klein , P. Solomon . J. Appl. Phys.. J. Appl. Phys.
    5. 5)
      • E.H. Nicollian , C.N. Berglund , P.F. Schmidt , J.M. Andrews . J. Appl. Phys.. J. Appl. Phys.
    6. 6)
      • W. Ting , P.C. Li , G.Q. Lo , D.L. Kwong . Electron. Lett.. Electron. Lett.
    7. 7)
      • E. Kohn , U. Mishra , L.F. Eastman . IEEE Electron Device Lett.. IEEE Electron Device Lett.
    8. 8)
      • M. Yano , H. Imai , M. Tagusagawa . J. Appl. Phys.. J. Appl. Phys.
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19900810
Loading

Related content

content/journals/10.1049/el_19900810
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading