Time-resolved chirp in mode-locked semiconductor lasers

Access Full Text

Time-resolved chirp in mode-locked semiconductor lasers

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Numerical simulations using the transmission-line laser model show that the instantaneous frequency of a 10 ps mode-locked pulse undergoes a rapid red-shift of 60 GHz during the first half of the pulse followed by a slow recovery of 10 GHz. Self-phase modulation is thought to cause this shift.

Inspec keywords: semiconductor device models; semiconductor junction lasers; laser theory; laser mode locking

Other keywords: dynamic model; numerical simulation; time-resolved chirp; mode-locked pulse; 10 ps; 850 nm; dispersive grating control; active mode locking; 1520 nm; dynamic frequency shifting; transmission-line laser model; modelled time-resolved spectrum; red-shift; instantaneous frequency; semiconductor lasers

Subjects: Semiconductor lasers; Lasing action in semiconductors; Laser beam modulation, pulsing and switching; mode locking and tuning

References

    1. 1)
      • M. Osinski , M.J. Adams . Transient time-averaged spectra of rapidly-modulated semiconductor lasers. IEE Proc. J , 34 - 37
    2. 2)
      • A.J. Lowery . Cyclic three-phase amplitude jitter in mode-locked semiconductor lasers. Electron. Lett. , 799 - 800
    3. 3)
      • P.P. Vasil'ev , V.N. Morozov , G.T. Pak , YU.M. Popov , A.B. Sergeev . Measurement of the frequency shift of a picosecond pulse from a mode-locked injection laser. Sov. J. Quantum Electron. , 859 - 860
    4. 4)
      • A.J. Lowery . Modelling spectral effects of dynamic saturation in semiconductor laser amplifiers using the transmission-line laser model. IEE Proc. J , 320 - 324
    5. 5)
      • J.E. Bowers , P.A. Morton , A. Mar , S.W. Corzine . Actively mode-locked semiconductor lasers. IEEE J. Quantum Electron. , 1426 - 1439
    6. 6)
      • M.S. Demokan . A model of a diode laser actively mode-locked by gain modulation. Int. J. Electron. , 67 - 80
    7. 7)
      • A.J. Lowery , I.W. Marshall . Stabilisation of mode-locked pulses using a travelling-wave semiconductor laser amplifier. Electron. Lett. , 104 - 106
    8. 8)
      • R.D. Strum , D.E. Kirk . (1988) , First principles of discrete systems and digital signal processing.
    9. 9)
      • L.D. Westbrook , M.J. Adams . Simple expressions for the linewidth enhancement factor in direct-gap semiconductors. IEE Proc. J , 209 - 214
    10. 10)
      • A.J. Lowery . A new time-domain model for active mode-locking based on the transmission-line laser model. IEE Proc. J , 264 - 272
    11. 11)
      • R.S. Tucker , G. Eisenstein , S.K. Korotky . Optical time-division multiplexing for very high bit-rate transmission. IEEE J. Lightwave Technol. , 1737 - 1749
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19900613
Loading

Related content

content/journals/10.1049/el_19900613
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading