Halogen lamp annealing of GaAs for MESFET fabrication

Access Full Text

Halogen lamp annealing of GaAs for MESFET fabrication

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Incoherent light from high-intensity halogen lamps was used for capless annealing of 2-inch GaAs wafers following silicon ion implantation. Fabrication of depletion mode MESFETs on the annealed wafers was used to study the DC characteristics and uniformity achieved with this annealing method. An average mutual transconductance of 110 mS/mm was obtained with MESFET fabricated wafers which were uniformly implanted at 5 × 1012 cm−2 with Si+ at 80 keV and subsequently annealed at 900°C for 2 s. The carrier concentration profiles obtained with this method are shown to be sharper than those obtained with furnace annealed wafers, which in turn results in a sharper device pinch-off voltage.

Inspec keywords: ion implantation; gallium arsenide; silicon; annealing; semiconductor doping; Schottky gate field effect transistors; III-V semiconductors

Other keywords: device pinch-off voltage; ion implantation; capless annealing; MESFET fabrication; Si+ dopant; DC characteristics; depletion mode; semiconductor doping; halogen lamps; uniformity; III-V semiconductors; mutual transconductance; 900°C; GaAs:Si; carrier concentration profiles; GaAs wafers

Subjects: Semiconductor doping; Other field effect devices

References

    1. 1)
      • H.A. Bomke , H.L. Berkowitz , M. Harmatz , S. Kronenburg , R. Lux . Annealing of ion-implanted Si by an incoherent light pulse. Appl. Phys. Lett. , 955 - 957
    2. 2)
      • M. Arai , K. Nishiyama , N. Watanabe . Radiation annealing of GaAs implanted with Si. Jpn. J. Appl. Phys. , L124 - L126
    3. 3)
      • R.A. Powell , T.O. Yep , R.T. Fulks . Activation of arsenic-implanted silicon using an incoherent light source. Appl. Phys. Lett. , 150 - 152
    4. 4)
      • D.E. Davies , P.J. McNally , J.P. Lorenzo , M. Julian . Incoherent annealing of implanted layers in GaAs. IEEE Electron Device Lett. , 102 - 103
    5. 5)
      • K. Ito , M. Yoshida , M. Otsubo , T. Murotani . Radiation annealing of Si- and S-implanted GaAs. Jpn. J. Appl. Phys. , L299 - L300
    6. 6)
      • K. Nishiyama , M. Arai , N. Watanabe . Radiation annealing of boron-implanted silicon with a halogen lamp. Jpn. J. Appl. Phys. , L563 - L566
    7. 7)
      • H. Kohzu , M. Kuzuhana , Y. Takayama . Infrared rapid thermal annealing for GaAs device fabrication. J. Appl. Phys. , 4998 - 5003
    8. 8)
      • M.H. Badawi , D.R. Dunbobbin , J. Mun . Selective implantation of GaAs for MESFET applications. Electron. Lett. , 598 - 600
    9. 9)
      • M. Kuzuhana , H. Kohzu , Y. Takayama . Infra-red rapid thermal annealing of Si implanted GaAs. Appl. Phys. Lett. , 755 - 758
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19840084
Loading

Related content

content/journals/10.1049/el_19840084
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading