http://iet.metastore.ingenta.com
1887

Inverse Jury-Blanchard table and its applications to the inverse stability problem

Inverse Jury-Blanchard table and its applications to the inverse stability problem

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This letter shows that the coefficients of the characteristic equation of a discrete time system can be obtained in a simple manner if the elements of the first column of the Jury-Blanchard table are given.

References

    1. 1)
      • A.C. Tsoi . Inverse Routh-Hurwitz array solution to the inverse stability problem. Electron. Lett. , 575 - 576
    2. 2)
      • Power, H.: `On cutting a system down to size', Survey paper, IEE symposium on approximation of linear systems, 1975, London.
    3. 3)
      • I. Schur . Über potenzreihen, die im innern des einheitskreises beschränkt sind. J. Rein. u Augewandte Maths. , 205 - 232
    4. 4)
      • A. Cohn . Über die anzahl der wurzeln einer algebraischen gleichung in einem kreise. Math Zeit , 110 - 148
    5. 5)
      • E. Jury , J. Blanchard . A stability test for linear discrete systems in table form. Proc. IRE , 1947 - 1948
    6. 6)
      • M. Mansour . Stability criteria of linear systems and the second method of Lyapunov. Scientia Electrica , 87 - 96
    7. 7)
      • J. Makhoul . Linear prediction: A tutorial. Proc. IEEE , 561 - 580
    8. 8)
      • A.H. Gray , J.D. Markel . Digital lattice and ladder filter synthesis. IEEE Trans. , 491 - 500
    9. 9)
      • A.H. Gray , J.D. Markel . A normalized digital filter structure. IEEE Trans. , 268 - 277
    10. 10)
      • Jarominek, W.: `Investigation of linear systems of automatic control by means of determinant stability margin indices', Proc. IFAC, 1960, p. 16–34.
    11. 11)
      • H. Power . Similarity transformation involving Schwarz and companion matrices. IEEE Trans. , 205 - 206
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19810578
Loading

Related content

content/journals/10.1049/el_19810578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address