Low temperature thermal annealing of arsenic implanted silicon

Access Full Text

Low temperature thermal annealing of arsenic implanted silicon

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The annealing of heavily arsenic implanted (100) silicon using low temperature furnace techniques to obtain metastable concentrations of the dopant is described and the activations obtained are compared with those found after laser and electron beam annealing.

Inspec keywords: annealing; ion implantation; elemental semiconductors; arsenic; electrical conductivity of crystalline semiconductors and insulators; semiconductor doping; silicon

Other keywords: activations; low temperature furnace techniques; metastable concentrations; thermal annealing; Si:As; elemental semiconductor

Subjects: Cold working, work hardening; post-deformation annealing, recovery and recrystallisation; textures; Semiconductor doping; Low-field transport and mobility; piezoresistance (semiconductors/insulators); Elemental semiconductors; Doping and implantation of impurities; Electrical conductivity of elemental semiconductors

References

    1. 1)
      • J.L. Regolini , T.W. Sigmon , J.F. Gibbons . Metastable 75As concentrations formed by scanning cw e-beam annealing of 75As-implanted silicon. Appl. Phys. Lett. , 114 - 116
    2. 2)
      • A. Gat , J.F. Gibbons . A laser-scanning apparatus for annealing of ion-implantation damage in semiconductors. Appl. Phys. Lett. , 142 - 144
    3. 3)
      • J.L. Regolini , J.F. Gibbons , T.W. Sigmon , R.F.W. Pease , T.J. Magee , J. Peng . Scanning-electron-beam annealing of arsenic-implanted silicon. Appl. Phys. Lett. , 410 - 412
    4. 4)
      • C.W. White , P.P. Pronko , S.R. Wilson , B.R. Appleton , J. Narayan , R.T. Young . Effects of pulsed ruby-laser annealing on As and Sb implanted silicon. J. Appl. Phys. , 3261 - 3273
    5. 5)
      • D.A. Antoniadis , R.W. Dutton . Models for computer simulation of complete IC fabrication processes. IEEE J. Solid-State Circ. , 412 - 422
    6. 6)
      • S.S. Lau , W.F. van der Weg . (1978) , Thin films—interdiffusion and reactions.
    7. 7)
      • GOLD, R. B., and LIETOILA, A.: Private communication.
    8. 8)
      • A.C. Greenwald , A.R. Kirkpatrick , R.G. Little , J.A. Minnucci . Pulsed electron-beam-annealing of ion implantation damage. J. Appl. Phys. , 783 - 787
    9. 9)
      • R.A. McMahon , H. Ahmed . Electron-beam annealing of ion implanted silicon. Electron. Lett. , 45 - 47
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19800426
Loading

Related content

content/journals/10.1049/el_19800426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading