http://iet.metastore.ingenta.com
1887

Current density distribution and equivalent photoconductance of laser-excited microstrip gap structures

Current density distribution and equivalent photoconductance of laser-excited microstrip gap structures

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The computation of current density distribution within the gap structure of laser-controlled microstrip devices by using finite-difference methods is reported. The numerical results verify the analytical approximation commonly used for the calculation of equivalent photoconductance.

References

    1. 1)
      • W. Platte , G. Appelhans . Optoelectronic gating of microwave signals using a silicon microstrip shunt modulator. Electron. Lett. , 270 - 271
    2. 2)
      • R. Castagné , R. Laval , S. Laval . Picosecond 1-wavelength optoelectronic gate. Electron. Lett. , 438 - 439
    3. 3)
      • A.M. Johnson , D.H. Auston . Microwave switching by picosecond photoconductivity. IEEE Trans. , 283 - 287
    4. 4)
      • W. Platte . Pulse shaping by laser-excited solid-state plasmas in silicon. Electron. Lett. , 631 - 633
    5. 5)
      • W. Platte . Spectral dependence of microwave power transmission in laser-controlled solid-state microstrip switches. IEE J. Solid-State & Electron Devices , 4 , 97 - 103
    6. 6)
      • M. Maeda . An analysis of gap in microstrip transmission lines. IEEE Trans. , 390 - 396
    7. 7)
      • Moesel, K.: `Inhomogen beleuchteter Photoleiter', Studienarbeit HF-81, 1978.
    8. 8)
      • A. Wexler . Computation of electromagnetic fields. IEEE Trans. , 416 - 439
    9. 9)
      • W.C. Dash , R. Newman . Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K. Phys. Rev. , 1151 - 1155
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19780396
Loading

Related content

content/journals/10.1049/el_19780396
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address