Uncertainty estimation of LiDAR matching aided by dynamic vehicle detection and high definition map

Uncertainty estimation of LiDAR matching aided by dynamic vehicle detection and high definition map

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

LiDAR matching between real-time point clouds and pre-built points map is a popular approach to provide accurate localisation service for autonomous vehicles. However, the performance is severely deteriorated in dense traffic scenes. Unavoidably, dynamic vehicles introduce additional uncertainty to the matching result. The main cause is that the pre-built map can be blocked by the surrounding dynamic vehicles from the view of LiDAR of ego vehicle. A novel uncertainty of LiDAR matching (ULM) estimation method aided by the dynamic vehicle (DV) detection and high definition map is proposed in this Letter. Compared to the conventional Hessian matrix-based ULM estimation approach, the proposed method innovatively estimates the ULM by modelling surrounding DV. Then the authors propose to correlate the ULM with the detected DV and convergence feature of matching algorithm. From the evaluated real-data in an intersection area with dense traffic, the proposed method has exhibited the feasibility of estimating the ULM accurately.

Related content

This is a required field
Please enter a valid email address