Your browser does not support JavaScript!

BBPD with wide input phase range

BBPD with wide input phase range

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wireline communication circuits often include serialisers/deserialisers using multiphase signals for multiplexing or sampling. From a power efficiency viewpoint, configurations are desired in which a single differential clock at frequency f is distributed to decentralised multiphase generators as opposed to distribution at 2f with local frequency dividers. A bang–bang phase detector (BBPD) is presented for such a multiphase generator operated from 4 to 16 GHz. Owing to the 2-octave frequency range, a wide input phase range is required for which the BBPD may not generate false locks. This is achieved by an implementation in which down pulses at the output of a fully symmetrical set/reset latch are stretched via pulse-width extension circuitries. A sampling pulse generated from one of the input phases can then easily capture the extended down pulses across a wide input phase range to unambiguously indicate phase leading or phase lagging to the control logic of the multiphase generator. The proposed circuitry has been implemented in a 7 nm CMOS technology. A comparison to alternative BBPD approaches implemented in the same technology shows that the proposed architecture outperforms them in terms of achievable input phase range.

Related content

This article has following corresponding article(s):
This is a required field
Please enter a valid email address