http://iet.metastore.ingenta.com
1887

Comparison of techniques for radiometric identification based on deep convolutional neural networks

Comparison of techniques for radiometric identification based on deep convolutional neural networks

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors investigate the application of deep convolutional neural networks (CNNs) to the problem of radiometric identification, i.e. the task of authenticating wireless devices on the basis of their radio frequency (RF) emissions, which contain features directly related to the physical properties of the wireless devices. They collected digitised RF from 12 wireless devices, and used various techniques to transform the time series derived from the RF to images. A deep CNN is then applied to the images. The authors' results show that the identification performance of the combination of deep CNN with an image representation significantly outperforms conventional methods based on dissimilarity on the original time series. Moreover, a specific comparison among RF-to-image techniques show that on their datasets the wavelet-based approach outperforms other approaches, also in the presence of white Gaussian noise.

http://iet.metastore.ingenta.com/content/journals/10.1049/el.2018.6229
Loading

Related content

content/journals/10.1049/el.2018.6229
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address