© The Institution of Engineering and Technology
Toeplitz matrix–vector product (TMVP) decomposition is an important approach for designing and implementing subquadratic multiplier. In this Letter, a symmetric matrix (SM), which is the sum of a symmetric TM and Hankel matrix, is proposed. Applying the symmetry property, 2way, 3way and nway splitting methods of SMVP is presented. On the basis of 2way splitting method, the recursive formula of SMVP is presented. Using the two cases n = 4 and 8, the SMVP decomposition approach has less space complexity than 2way TMVP, TMVP block recombination and symmetric TMVP for eventype Gaussian normal basis multiplication.
References


1)

16. Fan, H., Hasan, M.: ‘A new approach to subquadratic space complexity parallel multipliers for extended binary fields’, IEEE Trans. Comput., 2007, 56, (2), pp. 224–233 (doi: 10.1109/TC.2007.19).

2)

2. Hasan, M.A., Negre, C.: ‘Multiway splitting method for Toeplitz matrix vector product’, Trans. Comput., 2013, 62, (7), pp. 1467–1471 (doi: 10.1109/TC.2012.95).

3)

3. Han, J., Fan, H.: ‘GF(2n) shifted polynomial basis multipliers based on subquadratic Toeplitz matrix–vector product approach for all irreducible pentanomials’, Trans. Comput., 2015, 64, (3), pp. 862–867 (doi: 10.1109/TC.2013.2297106).

4)

4. Pan, J.S., Meher, P.K., Lee, C.Y., et al: ‘Efficient subquadratic parallel multiplier based on modified SPB of GF(2m)’. IEEE Int. Symp. Circuits and Systems (ISCAS), Lisbon, Portugal, May 2015, pp. 1430–1433.

5)

5. Hasan, M.A., Meloni, N., Namin, A.H., et al: ‘Block recombination approach for subquadratic space complexity binary field multiplication based on Toeplitz matrix–vector product’, Trans. Comput., 2012, 61, (2), pp. 151–163 (doi: 10.1109/TC.2010.276).

6)

6. Lee, C.Y., Meher, P.K., Liu, C.H.: ‘Areadelay efficient digitserial multiplier based on kpartitioning scheme combined with TMVP block recombination approach’, Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (7), pp. 2413–2425 (doi: 10.1109/TVLSI.2016.2514272).

7)

7. Lee, C.Y., Meher, P.K., Fan, C.C., et al: ‘Lowcomplexity digitserial multiplier over GF(2m) based on efficient Toeplitz block Toeplitz matrix–vector product decomposition’, Trans. Very Large Scale Integr. (VLSI) Syst., 2017, 25, (2), pp. 735–746 (doi: 10.1109/TVLSI.2016.2605183).

8)

8. Lee, C.Y., Meher, P.K.: ‘Areaefficient subquadratic spacecomplexity digitserial multiplier for typeII optimal normal basis of GF(2m) using symmetric TMVP and block recombination techniques’, Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (12), pp. 2846–2855 (doi: 10.1109/TCSI.2015.2495758).

9)

9. Yang, C.S., Pan, J.S., Lee, C.Y.: ‘Reduction of space complexity based on symmetric TMVP’, Electron. Lett., 2015, 51, (9), pp. 697–698 (doi: 10.1049/el.2015.0014).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2017.1719
Related content
content/journals/10.1049/el.2017.1719
pub_keyword,iet_inspecKeyword,pub_concept
6
6