© The Institution of Engineering and Technology
In the variable taplength algorithm, fastconvergence rate and small steadystate fluctuation of the taplength are two important criteria to evaluate performance of the algorithm. Furthermore, the simplicity and robustness to the noise are the key points for the algorithm to be applied in practise. Along this line, a very simple variable taplength algorithm is processed where the adaptation rule for fractional taplength is modified by incorporating strategy of limiting the amplitude of difference between squared output error and squared segmented error. Only at a slight cost of computational complexity, the proposed algorithm can achieve both small steadystate fluctuation and fastconvergence rate of the taplength under a high stochastic Gaussian noise condition (signaltonoise ratio = 0 dB) or a deterministic impulsive noise condition.
References


1)

1. Gu, Y.T., Tang, K., Cui, H.J., Du, W.: ‘Convergence analysis of a deficientlength LMS filter and optimallength sequence to model exponential decay impulse response’, IEEE Signal Process. Lett., 2003, 10, pp. 4–7 (doi: 10.1109/LSP.2002.806704).

2)

2. Zhang, Y.G., Li, N., Chambers, J.A., Sayed, A.H.: ‘Steadystate performance analysis of a variable taplength LMS algorithm’, IEEE Trans. Signal Process., 2008, 56, pp. 839–845 (doi: 10.1109/TSP.2007.907805).

3)

3. Yu, G., Cowan, C.F.N.: ‘An LMS style variable taplength algorithm for structure adaptation’, IEEE Trans. Signal Process., 2005, 53, pp. 2400–2407 (doi: 10.1109/TSP.2005.859261).

4)

39. Liu, Z.: ‘Variable taplength linear equaliser with variable taplength adaptation stepsize’, Electron. Lett., 2014, 50, (8), pp. 587–589 (doi: 10.1049/el.2014.0283).

5)

5. Xu, D.J., Yin, B., Wang, W., Zhu, W.: ‘Variable taplength LMS algorithm based on adaptive parameters for TDL structure adaption’, IEEE Signal Process. Lett., 2014, 21, pp. 809–813 (doi: 10.1109/LSP.2014.2317752).

6)

6. Kar, A., Chandra, M.: ‘Performance evaluation of a new variable taplength learning algorithm for automatic structure adaptation in linear adaptive filters’, AEU – Int. J. Electron. Commun., 2015, 69, pp. 253–261 (doi: 10.1016/j.aeue.2014.09.010).

7)

7. Zhang, Y.G., Chambers, J.A.: ‘Convex combination of adaptive filters for a variable tapLength LMS algorithm’, IEEE Signal Process. Lett., 2006, 13, pp. 628–631 (doi: 10.1109/LSP.2006.879457).

8)

8. Li, N., Zhang, Y., Zhao, Y., Hao, Y.: ‘An improved variable taplength LMS algorithm’, IEEE Signal Process., 2009, 89, pp. 908–912 (doi: 10.1016/j.sigpro.2008.11.008).

9)

9. Mayyas, K., AbuSeba, H.A.: ‘A new variable length NLMS adaptive algorithm’, Digital Signal Process., 2014, 34, pp. 82–91 (doi: 10.1016/j.dsp.2014.08.003).

10)

10. Li, L., Chambers, J.A.: ‘A novel adaptive leakage factor scheme for enhancement of a variable taplength learning algorithm’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, April 2008, pp. 3837–3840.

11)

11. Gong, Y., Cowan, C.F.N.: ‘Structure adaptation of linear MMSE adaptive filters’, Proc. – Vis. Image Signal Process., 2004, 151, pp. 271–277 (doi: 10.1049/ipvis:20040605).

12)

12. Wei, Y., Yan, Z.B.: ‘Hybrid fractional taplength LMS algorithm for high noise environment’. Proc. 35th Chinese Control Conf., 2016, pp. 4906–4910.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2016.2940
Related content
content/journals/10.1049/el.2016.2940
pub_keyword,iet_inspecKeyword,pub_concept
6
6