© The Institution of Engineering and Technology
Sequential order one negative exponential (SOONE) function is used to measure the sparsity of a twodimensional (2D) signal. A 2D gradient projection (GP) method is developed to solve the SOONE function and thus the 2DGPSOONE algorithm is proposed. The algorithm can solve the sparse recovery of 2D signals directly. Theoretical analysis and simulation results show that the 2DGPSOONE algorithm has a better performance compared with the 2D smoothed L0 algorithm. Simulation results also show that the proposed algorithm has a better performance and requires less computation time than 2D iterative adaptive approach.
References


1)

2. Cotter, S.F., Rao, B.D., Engan, K., et al: ‘Sparse solutions to linear inverse problems with multiple measurement vectors’, IEEE Trans. Signal Process., 2005, 53, pp. 2477–2488 (doi: 10.1109/TSP.2005.849172).

2)

3. Wipf, D.P., Rao, B.D.: ‘An empirical Bayesian strategy for solving the simultaneous sparse approximation problem’, IEEE Trans. Signal Process., 2007, 55, pp. 3704–3716 (doi: 10.1109/TSP.2007.894265).

3)

20. Ma, C., Yeo, T., Zhao, Y., et al: ‘MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form’, IEEE Trans. Image Process., 2014, 23, (5), pp. 2168–2183 (doi: 10.1109/TIP.2014.2311735).

4)

12. Babacan, S.D., Molina, R., Katsaggelos, A.K.: ‘Bayesian compressive sensing using laplace priors’, , IEEE Trans. Image Process., 2010, 19, (1), pp. 53–63 (doi: 10.1109/TIP.2009.2032894).

5)

33. Mohimani, G.H., Babaiezadeh, M., Jutten, Ch.: ‘A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm’, IEEE Trans. Signal Process, 2009, 57, (1), pp. 289–301 (doi: 10.1109/TSP.2008.2007606).

6)

25. Tropp, J.: ‘Greed is good: algorithmic results for sparse approximation’, IEEE Trans. Inf. Theory, 2004, 50, (10), pp. 2231–2242 (doi: 10.1109/TIT.2004.834793).

7)

25. JabbarianJahromi, M., Kahaei, M.H.: ‘Twodimensional iterative adaptive approach for a sparse matrix solution’, Electron. Lett., 2014, 50, pp. 45–47 (doi: 10.1049/el.2013.2159).

8)

8. Ghaffari, A., BabaieZadeh, M., Jutten, C.: ‘Sparse decomposition of two dimensional signals’. IEEE Int. Conf. Acoustics, Speech Signal Processing, Teipei, Taiwan, April 2009, pp. 3157–3160.

9)

4. Chartrand, R.: ‘Exact reconstruction of sparse signals via nonconvex minimization’, IEEE Signal Process. Lett., 2007, 14, pp. 707–710 (doi: 10.1109/LSP.2007.898300).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2016.0912
Related content
content/journals/10.1049/el.2016.0912
pub_keyword,iet_inspecKeyword,pub_concept
6
6