Improving the efficiency of a reconfigurable microstrip patch using magneto-static field responsive structures

Improving the efficiency of a reconfigurable microstrip patch using magneto-static field responsive structures

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new approach on improving the efficiency of a frequency reconfigurable rectangular microstrip patch antenna using magneto-static responsive structures (MRSs) is proposed. In particular, a 1.5 mm × 1.5 mm × 0.508 mm volumetric structure consisting of two parallel conducting plates separated by a dielectric material summarises the overall MRS embodiment. The dielectric material has a cylindrical cavity (i.e. drilled cavity) with a diameter of 0.9 mm and is partially filled with conducting particles (i.e. silver-coated nickel-based cores) that respond to magneto-static fields. Then, when a small permanent magnet is placed close to the MRS, the conducting particles form columns orientated in the direction of the field lines and connect the two conducting plates, acting as an RF switch. Next, to demonstrate the benefits of the MRS, the efficiency of a reconfigurable patch antenna is investigated. Finally, for comparison, the MRS-based reconfigurable antenna is compared with the measured and simulated efficiency of a reconfigurable patch antenna with the same geometry that uses P-region Intrinsic-region N-region (PIN) diodes. It was shown that the MRS-based design had a much better efficiency (50% larger).

Related content

This article has following corresponding article(s):
in brief
This is a required field
Please enter a valid email address