access icon free 2 ps resolution, fine-grained delay element in 28 nm FDSOI

A novel diversely body-biased current-starved delay element (DE) architecture for fine-grained DEs is presented. Using fully depleted silicon-on-insulator back-body biasing, it achieves a resolution of 2 ps with a delay quantisation error of 7.1%. Compared with the state-of-the-art DEs, it exhibits the least leakage current and efficient overall energy consumption and is the most robust to process variations.

Inspec keywords: leakage currents; energy consumption; silicon-on-insulator

Other keywords: FDSOI; fine-grained DE; size 28 nm; diversely body-biased current-starved delay element; delay quantisation error; energy consumption; leakage current; fine-grained delay element; fully depleted silicon-on-insulator back-body biasing

Subjects: Metal-insulator-semiconductor structures

References

    1. 1)
      • 9. Singhvi, A., Moreira, M., Tadros, R., et al: ‘A fine-grained, uniform, energy-efficient delay element for FD-SOI technologies’. ISVLSI 2015, Montpellier, France, July 2015, 2732.
    2. 2)
      • 11. Flatresse, P., Giraud, B., Noel, J., et al: ‘Ultra-wide body-bias range LDPC decoder in 28 nm UTBB FDSOI technology’. ISSCC 2013, San Francisco, CA, February 2013, pp. 424425.
    3. 3)
    4. 4)
      • 4. Yao, C., Jonsson, F., Chen, J., et al: ‘A high-resolution time-to-digital converter based on parallel delay elements’. ISCAS 2012, May 2012, pp. 31583161.
    5. 5)
      • 10. Mahapatra, N., Tareen, A., Garimella, S.: ‘Comparison and analysis of delay elements’. MWSCAS 2002, vol. 2, Tulsa, OK, August 2002, pp. 473476.
    6. 6)
      • 6. Beerel, P.A., Ozdag, R.O., Ferretti, M.: ‘A designer's guide to asynchronous VLSI’ (Cambridge University Press, 2010).
    7. 7)
      • 2. Chiang, J.-S., Chen, K.-Y.: ‘The design of an all-digital phase-locked loop with small DCO hardware and fast phase lock’, IEEE TCAS-II, 1999, 46, (7), pp. 945950.
    8. 8)
      • 3. Tschanz, J., Bowman, K., Walstra, S., et al: ‘Tunable replica circuits and adaptive voltage-frequency techniques for dynamic voltage, temperature, and aging variation tolerance’. 2009 Symp. on VLSI Circuits, Kyoto, JapanJune 2009, pp. 112113.
    9. 9)
      • 1. Jasielski, J., Kuta, S., Machowski, W., et al: ‘An analog dual delay locked loop using coarse and fine programmable delay elements’. MIXDES 2013, Gdynia, PolandJune 2013, pp. 185190.
    10. 10)
      • 8. Hand, D., Moreira, M.T., Huang, H.-H., et al: ‘Blade – a timing violation resilient asynchronous template’. ASYNC 2015, May 2015, pp. 2128.
    11. 11)
      • 12. Heck, G., Heck, L., Singhvi, A., et al: ‘Analysis and optimization of programmable delay elements for 2-phase bundled-data circuits’. VLSID 2015, Bangalore, India, January 2015, pp. 321326.
    12. 12)
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2015.2667
Loading

Related content

content/journals/10.1049/el.2015.2667
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading