© The Institution of Engineering and Technology
A lowcost faulttolerant finite impulse response (FIR) filter is presented to save logic resources. Based on the redundant residue number system (RRNS), it eliminates soft errors generated by single event upset (SEU) in space applications, which requires only one threemoduli set residue to binary converter based on the Chinese remainder theorem. When a soft error happens, only one smallsized firstin–firstout and rollback operations are needed to refresh the FIR filter corrupted by SEU. Theoretical analysis and fault injections are performed to validate that there is no fault missing event. In addition, the proposed scheme can save 21% cell area compared with the conventional RRNS method.
References


1)

2. Koren, I., Krishna, C.M.: ‘Fault tolerant systems’ (Morgan Kaufmann, San Francisco, CA, 2007).

2)

6. Yang, W., Gao, Z., Chen, X., Zhao, M., Wang, J.: ‘Residue code based low cost SEUtolerant fir filter design for OBP satellite communication systems’, EURASIP J. Wirel. Commun. Netw., 2012, 2012, p. 174 (doi: 10.1186/168714992012174).

3)

W. Wang ,
M.N.S. Swamy ,
M.O. Ahmad ,
Y. Wang
.
a study of the residuetobinary converters for the threemoduli sets.
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.
,
2 ,
235 
243

4)

P. Reviriego ,
C. Bleakley ,
J.A. Maestro
.
Signal shaping dual modular redundancy for soft error tolerant finite impulse response filters.
Electron. Lett.
,
23 ,
1272 
1273

5)

3. Pontarelli, S., Cardarilli, G.C., Re, M., Salsano, A.: ‘A novel error detection and correction technique for RNS based FIR filters’. IEEE Int. Symp. on Defect and Fault Tolerance of VLSI Systems, Boston, MA, USA, October 2008, pp. 436–444.

6)

7. Gao, Z., Reviriego, P., Pan, W., Xu, Z., et al: ‘Efficient arithmeticresiduebased SEUtolerant FIR filter design’, IEEE Trans. Circuits Syst. II, 2013, 60, (8), pp. 497–501 (doi: 10.1109/TCSII.2013.2261183).

7)

9. Wang, W., Xia, X.G.: ‘A closedform robust Chinese remainder theorem and its performance analysis’, IEEE Trans. Signal Process., 2010, 58, (11), pp. 5655–5666 (doi: 10.1109/TSP.2010.2066974).

8)

4. Ananda Mohan, P.V., Premkumar, A.B.: ‘RNStobinary converters for two fourmoduli sets {2n− 1, 2n, 2n + 1, 2n+1− 1} and {2n− 1, 2n, 2n + 1, 2n+1 + 1}’, IEEE Trans. Circuits Syst. I, 2007, 54, (6), pp. 1245–1254 (doi: 10.1109/TCSI.2007.895515).

9)

8. Berg, M., Kim, H., Friendlich, M., Perez, C., Seidleck, C., LaBel, K., Ladbury, R.: ‘SEU analysis of complex circuits implemented in Actel RTAXS FPGA devices’, IEEE Trans. Nucl. Sci., 2011, 58, (3), pp. 1015–1022 (doi: 10.1109/TNS.2011.2128886).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2014.3508
Related content
content/journals/10.1049/el.2014.3508
pub_keyword,iet_inspecKeyword,pub_concept
6
6