access icon free Snapback-free reverse-conducting IGBT with low turnoff loss

A novel structure of the reverse-conducting insulated gate bipolar transistor (RC-IGBT) is proposed. The structure is connected anti-parallel with a PNP and an NPN transistor, which are in a collector-base short-circuited configuration. Bidirectional conduction capability with no snapback can be obtained by this structure and the turnoff speed can be much improved. The structure can work in two different modes in a reverse-conducting state: a diode mode and a thyristor mode. Two-dimensional numerical simulation results show that the novel RC-IGBT reduces the turnoff loss (E off) by 26.4 and 37.7% for the thyristor mode and the diode mode, respectively, and has no current non-uniformity compared with the conventional RC-IGBT.

Inspec keywords: numerical analysis; semiconductor diodes; insulated gate bipolar transistors; thyristors

Other keywords: thyristor mode; diode mode; PNP transistor; snapback-free RC-IGBT; two-dimensional numerical simulation; NPN transistor; collector-base short-circuited configuration; bidirectional conduction capability; reverse-conducting insulated gate bipolar transistor

Subjects: Junction and barrier diodes; Other numerical methods; Power semiconductor devices; Thyristors and silicon controlled rectifiers; Insulated gate field effect transistors; Bipolar transistors

References

    1. 1)
      • 4. Storasta, L., Rahimo, M., Bellini, M., Kopta, A., Vemulapati, U.R., Kaminski, N.: ‘The radial layout design concept for the bi-mode insulated gate transistor’. Proc. ISPSD, San Diego, CA, USA, May 2011, pp. 5659.
    2. 2)
      • 2. Akiyama, H., Minato, T., Harada, M., Pan, H., Hsinghou, P., Kondoh, H., Akasaka, Y.: ‘Effects of shorted collector on characteristics of IGBTs’. Proc. ISPSD, Tokyo, Japan, April 1990, pp. 131136.
    3. 3)
      • 5. Rahimo, M., Schlapbach, U., Kopta, A., Vobecky, J., Schneider, D., Baschnagel, A.: ‘A high current 3300 V module employing reverse conducting IGBTs setting a new benchmark in output power capability’. Proc. ISPSD, Orlando, FL, USA, May 2008, pp. 6871.
    4. 4)
      • 1. Takahashi, H., Yamamoto, A., Aono, S., Minato, T.: ‘1200 V reverse conducting IGBT’. Proc. ISPSD, Kitakyushu, Japan, May 2004, pp. 133136.
    5. 5)
      • 4. Storasta, L., Rahimo, M., Bellini, M., Kopta, A., Vemulapati, U.R., Kaminski, N.: ‘The radial layout design concept for the bi-mode insulated gate transistor’. Proc. ISPSD, San Diego, CA, USA, May 2011, pp. 5659.
    6. 6)
    7. 7)
      • 1. Takahashi, H., Yamamoto, A., Aono, S., Minato, T.: ‘1200 V reverse conducting IGBT’. Proc. ISPSD, Kitakyushu, Japan, May2004, pp. 133136.
    8. 8)
      • 5. Rahimo, M., Schlapbach, U., Kopta, A., Vobecky, J., Schneider, D., Baschnagel, A.: ‘A high current 3300 V module employing reverse conducting IGBTs setting a new benchmark in output power capability’. Proc. ISPSD, Orlando, FL, USA, May 2008, pp. 6871.
    9. 9)
      • 11. Synopsys Inc., Fremont, CA, MEDICI, Two Dimensional Device Simulation Program, 2002.
    10. 10)
    11. 11)
      • 7. Hsu, W.C.W., Udrea, F., Hsu, H.Y., Lin, W.C.: ‘Reverse-conducting insulated gate bipolar transistor with an anti-parallel thyristor’. Proc. ISPSD, Hiroshima, Japan, June 2010, pp. 149152.
    12. 12)
      • 10. Baliga, B.J., and Jayant, B.: ‘Power semiconductor devices’ (PWS Publishing Company, Boston, MA, 1996), pp. 262279.
    13. 13)
      • 2. Akiyama, H., Minato, T., Harada, M., Pan, H., Hsinghou, P., Kondoh, H., Akasaka, Y.: ‘Effects of shorted collector on characteristics of IGBTs’. Proc. ISPSD, Tokyo, Japan, April 1990, pp. 131136.
    14. 14)
    15. 15)
      • 6. Antoniou, M., Udrea, F., Bauer, F., Nistor, I.: ‘A new way to alleviate the RC IGBT snapback phenomenon: the superjunction solution’. Proc. ISPSD, Hiroshima, Japan, June 2010, pp. 153156.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2014.0169
Loading

Related content

content/journals/10.1049/el.2014.0169
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading