access icon free High reliability sensing circuit for deep submicron spin transfer torque magnetic random access memory

A high reliability offset-tolerant sensing circuit is presented for deep submicron spin transfer torque magnetic tunnel junction (STT-MTJ) memory. This circuit, using a triple-stage sensing operation, is able to tolerate the increased process variations as technology scales down to the deep submicron nodes, thus improving significantly the sensing margin. Meanwhile, it clamps the bit-line voltage to a predefined small bias voltage to avoid any read disturbance during the sensing operations. By using the STMicroelectronics CMOS 40 nm design kit and a precise STT-MTJ compact model, Monte Carlo simulations have been carried out to evaluate its sensing performance.

Inspec keywords: semiconductor device reliability; magnetic tunnelling; random-access storage; CMOS memory circuits; Monte Carlo methods

Other keywords: deep submicron spin transfer torque magnetic random access memory; predefined small bias voltage; STMicroelectronics CMOS design kit; high reliability sensing circuit; deep submicron nodes; Monte Carlo simulations; triple-stage sensing operation; STT-MTJ compact model; bit-line voltage

Subjects: Reliability; Memory circuits; Monte Carlo methods; Monte Carlo methods; CMOS integrated circuits; Semiconductor storage

References

    1. 1)
      • 1. Chappert, C., Fert, A., Nguyen, V.D.F.: ‘The emergence of spin electronics in data storage’, Nature Mater., 2007, 6, pp. 813823 (doi: 10.1038/nmat2024).
    2. 2)
      • 3. Mochizuki, A., Kimura, H., Ibuki, M., Hanyu, T.: ‘TMR-based logic-in-memory circuit for low-power VLSI’, IEICE Trans. Fundam., 2005, E88-A, (6), pp. 14081415 (doi: 10.1093/ietfec/e88-a.6.1408).
    3. 3)
      • 4. Chen, Y., Li, H., Wang, X., Zhu, W., Xu, W., Zhang, T.: ‘A non-destructive self-reference scheme for spin-transfer torque random access memory (STT-RAM)’. DATE, Dresden, Germany, March 2010, pp. 148153.
    4. 4)
      • 2. Lin, C.J., Kang, S.H., Wang, Y.J., et al: ‘45 nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1 T/1MTJ cell’. IEEE IEDM, Baltimore, MD, December 2009, pp. 279282.
    5. 5)
      • 5. Zhao, W.S., Chappert, C., Javerliac, V., Noziere, J.P.: ‘High speed, high stability and low power sensing amplifier for MTJ/CMOS hybrid logic circuits’, IEEE Trans. Magn., 2009, 45, (10), pp. 37843787 (doi: 10.1109/TMAG.2009.2024325).
    6. 6)
      • 7. Zhang, Y., Zhao, W.S., Ravelosona, D., Klein, J.-O., Kim, J.V., Chappert, C.: ‘Compact modelling of perpendicular anisotropy CoFeB/MgO magnetic tunnel junctions’, IEEE Trans. Electron Devices, 2011, 59, (3), pp. 819826 (doi: 10.1109/TED.2011.2178416).
    7. 7)
      • 6. STMicroelectronics: ‘Manual of design kit for CMOS 40 nm’, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.2319
Loading

Related content

content/journals/10.1049/el.2013.2319
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
inside view