access icon free High-resolution imaging of defects in CdTe solar cells using thermoreflectance

Thermal imaging of solar cells is important for diagnosing non-uniform operation or point defects, which can reduce cell efficiency. However, imaging with infrared light is impractical for superstrate CdTe cells because the glass substrate blocks transmission of light. It is shown that thermoreflectance – a lock-in technique that detects changes in the reflectivity of visible light – can circumvent this problem and achieve thermal images with spatial resolution limited only by the imaging wavelength. The diagnostic is used to show that a particular defect is a resistive shunt.

Inspec keywords: cadmium compounds; thermoreflectance; solar cells; II-VI semiconductors; point defects

Other keywords: spatial resolution; resistive shunt; glass substrate; light transmission; thermal imaging; point defects; cell efficiency; CdTe; infrared light; imaging wavelength; thermoreflectance; nonuniform operation; superstrate cells; visible light; lock-in technique

Subjects: Solar cells and arrays; Photoelectric conversion; solar cells and arrays; Other point defects; Thermo-optical and photothermal effects (condensed matter)

References

    1. 1)
      • 8. Farzaneh, M., Maize, K., Lüerßen, D., Summers, J.A., Mayer, P.M., Raad, P.E., Pipe, K.P., Shakouri, A., Ram, R.J., Hudgings, J.A.: ‘CCD-based thermoreflectance microscopy: principles and applications’, J. Phys. D, Appl. Phys., 2009, 42, p. 143001 (doi: 10.1088/0022-3727/42/14/143001).
    2. 2)
      • 9. Kobyakov, P.S., Kephart, J.M., Sampath, W.S.: ‘Sublimation of Mg onto CdS/CdTe films fabricated by advanced deposition system’. 37th IEEE Photovoltaic Specialists Conf. (PVSC), Seattle, WA, USA, June 2011, pp. 27402745.
    3. 3)
      • 2. Breitenstein, O., Langenkamp, M.: ‘Lock-in thermography’ (Springer, 2003), p. 20.
    4. 4)
      • 3. Johnston, S., Repins, I., Sundaramoorthy, R., Jones, K.M., To, B.: ‘Correlations of photo-electro-thermal-luminescent imaging of Cu(In,Ga)Se2 with device performance, defects, and micro-structural properties’. 35th IEEE Photovoltaic Specialists Conf. (PVSC), Honolulu, HI, USA, June 2010, pp. 611.
    5. 5)
      • 5. Straube, H., Breitenstein, O.: ‘Infrared lock-in thermography through glass substrates’, Solar Energy Mater. Solar Cells, 2011, 95, pp. 27682771 (doi: 10.1016/j.solmat.2011.05.017).
    6. 6)
      • 6. Summers, J.A., Yang, T., Tuominen, M.T., Hudgings, J.A.: ‘High contrast, depth-resolved thermoreflectance imaging using a Nipkow disk confocal microscope’, Rev. Sci. Instrum., 2010, 81, p. 014902 (doi: 10.1063/1.3276700).
    7. 7)
      • 4. Compaan, A.D., Gupta, A., Lee, S., Wang, S., Drayton, J.: ‘High efficiency, magnetron sputtered CdS/CdTe solar cells’, Solar Energy, 2004, 77, pp. 815822 (doi: 10.1016/j.solener.2004.06.013).
    8. 8)
      • 7. Matatagui, E., Thompson, A.G., Cardona, M.: ‘Thermoreflectance in semiconductors’, Phys. Rev., 1968, 176, pp. 950960 (doi: 10.1103/PhysRev.176.950).
    9. 9)
      • 1. Shvydka, D., Rakotoniaina, J.P., Breitenstein, O.: ‘Lock-in thermography and nonuniformity modeling of thin-film CdTe solar cells’, Appl. Phys. Lett., 2004, 84, pp. 729731 (doi: 10.1063/1.1645322).
    10. 10)
      • 10. Breitenstein, O., Rakotoniaina, J., Al Rifai, M., Werner, M.: ‘Shunt types in crystalline silicon solar cells’, Prog. Photovolt., Res. Appl., 2004, 12, pp. 529538 (doi: 10.1002/pip.544).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1884
Loading

Related content

content/journals/10.1049/el.2013.1884
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
in brief