access icon free High-speed direct modulation unidirectional emission microring lasers

A InAlGaAs/InP microring laser with a ring width of 5 µm and an external radius of 10 µm, connected with a 2 µm-wide output waveguide, is fabricated by the planar technology process. Continuous-wave lasing operation is realised with a threshold current of 3 mA at 298 K, and 3 dB bandwidths of 10.8 and 8.7 GHz are obtained at the injection currents of 12 mA at 291 and 298 K, respectively.

Inspec keywords: indium compounds; waveguide lasers; III-V semiconductors; laser beams; quantum well lasers; optical fabrication; optical modulation; microcavity lasers; ring lasers; gallium arsenide; optical planar waveguides; aluminium compounds

Other keywords: frequency 10.8 GHz; current 3 mA; radius 10 mum; temperature 291 K; continuous wave lasing operation; frequency 8.7 GHz; planar technology; ring width; output waveguide; threshold current; external radius; injection currents; size 5 mum; current 12 mA; temperature 298 K; InAlGaAs-InP; size 2 mum; high-speed direct modulation; unidirectional emission microring lasers

Subjects: Laser resonators and cavities; Laser beam modulation, pulsing and switching; mode locking and tuning; Optical fabrication, surface grinding; Semiconductor lasers; Laser resonators and cavities; Laser beam characteristics and interactions; Optical waveguides and couplers; Optical waveguides; Laser beam modulation, pulsing and switching; mode locking and tuning; Design of specific laser systems; Lasing action in semiconductors

References

    1. 1)
      • 7. Lv, X.M., Huang, Y.Z., Zou, L.X., Long, H., Du, Y.: ‘Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor’, Laser Photonics Rev., 2013, 7, (5), pp. 818829 (doi: 10.1002/lpor.201300036).
    2. 2)
      • 6. Lv, X.M., Zou, L.X., Huang, Y.Z., Yang, Y.D., Xiao, J.L., Yao, Q.F., Lin, J.D.: ‘Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis’, IEEE J. Quantum Electron., 2011, 47, (12), pp. 15191525 (doi: 10.1109/JQE.2011.2173658).
    3. 3)
      • 1. Choi, S.J., Djordjev, K., Choi, S.J., Dapkus, P.D.: ‘Microdisk lasers vertically coupled to output waveguides’, IEEE Photonics Technol. Lett., 2003, 15, (10), pp. 13301332 (doi: 10.1109/LPT.2003.817990).
    4. 4)
      • 2. Van Campenhout, J., Rojo-Romeo, P., Regreny, P., Seassal, C., Van Thourhout, D., Verstuyft, S., Di Cioccio, L., Fedeli, J.M., Lagahe, C., Baets, R.: ‘Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit’, Opt. Express, 2007, 15, (9), pp. 67446749 (doi: 10.1364/OE.15.006744).
    5. 5)
      • 9. Yang, Y.D., Wang, S.J., Huang, Y.Z.: ‘Investigation of mode coupling in a microdisk resonator for realizing directional emission’, Opt. Express, 2009, 17, (25), pp. 2301023015 (doi: 10.1364/OE.17.023010).
    6. 6)
      • 8. Lv, X.M., Zou, L.X., Lin, J.D., Huang, Y.Z., Yang, Y.D., Yao, Q.F., Xiao, J.L., Du, Y.: ‘Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers’, IEEE Photonics Technol. Lett., 2012, 24, (11), pp. 963965 (doi: 10.1109/LPT.2012.2190892).
    7. 7)
      • 3. Lin, J.D., Huang, Y.Z., Yao, Q.F., Lv, X.M., Yang, Y.D., Xiao, J.L., Du, Y.: ‘InAlGaAs/InP cylinder microlaser connected with two waveguides’, Electron. Lett., 2010, 47, (16), pp. 929930 (doi: 10.1049/el.2011.2098).
    8. 8)
      • 4. Roelkens, G., Liu, L., Liang, D., Jones, R., Fang, A., Koch, B., Bowers, J.: ‘III-V/silicon photonics for on-chip and inter-chip optical interconnects’, Laser Photonics Rev., 2010, 4, (6), pp. 751779 (doi: 10.1002/lpor.200900033).
    9. 9)
      • 5. Mao, M.H., Chien, H.C.: ‘Transient behaviors of current-injection quantum-dot microdisk lasers’, Opt. Express, 2012, 20, (3), pp. 33023310 (doi: 10.1364/OE.20.003302).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1748
Loading

Related content

content/journals/10.1049/el.2013.1748
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading