access icon free Yield-driven design of tunnelling SRAM cells

As an implementation of the static random access memory (SRAM), the tunnelling SRAM (TSRAM) uses the negative differential resistance of resonant (interband) tunnelling diodes (R(I)TDs) and potentially offers improved standby power dissipation and integration density compared with the conventional CMOS SRAM. TSRAM has not yet been realised with a useful bit capacity mainly because the level of reproducibility required of the nanoscale R(I)TDs has been demanding and difficult to achieve. In this reported work, the design of TSRAM cells is approached from the perspective of maximising their yield and specific results are presented for an RITD-based cell. With advances in the control of semiconductor multilayer growth, it is shown that achieving acceptable yields is now within sight.

Inspec keywords: tunnelling; integrated circuit yield; integrated circuit design; resonant tunnelling diodes; SRAM chips; semiconductor growth

Other keywords: semiconductor multilayer growth; static random access memory; yield driven design; negative differential resistance; resonant tunnelling diodes; integration density; TSRAM; tunnelling SRAM cells

Subjects: Semiconductor storage; Digital circuit design, modelling and testing; Junction and barrier diodes; Memory circuits

References

    1. 1)
      • 8. Sudirgo, S., et al: ‘NMOS/SiGe resonant interband tunneling diode static random access memory’. Proc. 64th Device Research Conf., State College, PA, USA, 2006, pp. 265266.
    2. 2)
      • 10. Shao, C., Sexton, J., Missous, M., Kelly, M.J.: ‘Achieving the reproducibility needed for manufacturing semiconductor tunnel devices’, Electron. Lett., 2013, 49, (10), pp. 674675 (doi: 10.1049/el.2013.0782).
    3. 3)
      • 4. Rommel, S.L., et al: ‘Room temperature operation of epitaxially grown Si/Si0.5Ge0.5/Si resonant interband tunneling diodes’, Appl. Phys. Lett., 1998, 73, (15), pp. 21912193 (doi: 10.1063/1.122419).
    4. 4)
      • 14. Ramesh, A., Berger, P.R., Loo, R.: ‘High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition’, Appl. Phys. Lett., 2012, 100, (9), p. 092104 (doi: 10.1063/1.3684834).
    5. 5)
      • 7. van der Wagt, J.P.A., Seabaugh, A., Beam III, E.A.: ‘RTD/HFET low standby power SRAM gain cell’. IEDM Techn. Dig., New York, USA, 1996, pp. 425428.
    6. 6)
      • 1. Eaves, L., Kelly, M.J. (Eds): ‘The current status of semiconductor tunnelling devices’, Philos. Trans. R. Soc., 1996, 354, pp. 22892467.
    7. 7)
      • 6. Paul, D.J.: ‘Si/SiGe heterostructures: from material and physics to devices and circuits’, Semicond. Sci. Technol., 2004, 19, (10), pp. R75R108 (doi: 10.1088/0268-1242/19/10/R02).
    8. 8)
      • 11. Prost, W., et al: ‘Manufacturability and robust design of nanoelectronic logic circuits based on resonant tunnelling diodes’, Int. J. Circuit Theory Appl., 2000, 28, (6), pp. 537552 (doi: 10.1002/1097-007X(200011/12)28:6<537::AID-CTA126>3.0.CO;2-B).
    9. 9)
      • 12. Jin, N., Chung, S.-Y., Yu, R., Heyns, R.M., Berger, P.R., Thompson, P.E.: ‘The effect of spacer thickness on Si-based resonant interband tunneling diode performance and their application to low-power tunneling diode SRAM circuits’, IEEE Trans. Electron Devices, 2006, 53, (9), pp. 22432249 (doi: 10.1109/TED.2006.879678).
    10. 10)
      • 5. van der Wagt, J.P.A.: ‘Tunneling-based SRAM’, Proc. IEEE, 1999, 87, (4), pp. 571595 (doi: 10.1109/5.752516).
    11. 11)
      • 3. Chang, L.L., Esaki, L., Tsu, R.: ‘Resonant tunneling in semiconductor double barriers’, Appl. Phys. Lett., 1974, 24, (12), pp. 593595 (doi: 10.1063/1.1655067).
    12. 12)
      • 9. Zuo, D., Kelly, M.J.: ‘Estimating and enhancing the yield of tunneling SRAM cells by simulation’. Int. Semiconductor Device Research Symp., College Park, MD, USA, 2011.
    13. 13)
      • 13. Ramesh, A., Park, S.-Y., Berger, P.R.: ‘90 nm 32 × 32 bit tunneling SRAM memory array with 0.5 ns write access time, 1 ns read access time and 0.5 V operation’, IEEE Trans. Circuits Syst. I, Reg. Pprs., 2011, 58, (10), pp. 24322445 (doi: 10.1109/TCSI.2011.2123630).
    14. 14)
      • 2. Kelly, M.J.: ‘The unacceptable variability in tunnel currents for proposed electronic device applications’, Semicond. Sci. Technol., 2006, 21, pp. L4951 (doi: 10.1088/0268-1242/21/12/L01).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1719
Loading

Related content

content/journals/10.1049/el.2013.1719
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading