Yield-driven design of tunnelling SRAM cells

Yield-driven design of tunnelling SRAM cells

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As an implementation of the static random access memory (SRAM), the tunnelling SRAM (TSRAM) uses the negative differential resistance of resonant (interband) tunnelling diodes (R(I)TDs) and potentially offers improved standby power dissipation and integration density compared with the conventional CMOS SRAM. TSRAM has not yet been realised with a useful bit capacity mainly because the level of reproducibility required of the nanoscale R(I)TDs has been demanding and difficult to achieve. In this reported work, the design of TSRAM cells is approached from the perspective of maximising their yield and specific results are presented for an RITD-based cell. With advances in the control of semiconductor multilayer growth, it is shown that achieving acceptable yields is now within sight.


    1. 1)
      • 1. Eaves, L., Kelly, M.J. (Eds): ‘The current status of semiconductor tunnelling devices’, Philos. Trans. R. Soc., 1996, 354, pp. 22892467.
    2. 2)
      • 2. Kelly, M.J.: ‘The unacceptable variability in tunnel currents for proposed electronic device applications’, Semicond. Sci. Technol., 2006, 21, pp. L4951 (doi: 10.1088/0268-1242/21/12/L01).
    3. 3)
      • 3. Chang, L.L., Esaki, L., Tsu, R.: ‘Resonant tunneling in semiconductor double barriers’, Appl. Phys. Lett., 1974, 24, (12), pp. 593595 (doi: 10.1063/1.1655067).
    4. 4)
      • 4. Rommel, S.L., et al: ‘Room temperature operation of epitaxially grown Si/Si0.5Ge0.5/Si resonant interband tunneling diodes’, Appl. Phys. Lett., 1998, 73, (15), pp. 21912193 (doi: 10.1063/1.122419).
    5. 5)
      • 5. van der Wagt, J.P.A.: ‘Tunneling-based SRAM’, Proc. IEEE, 1999, 87, (4), pp. 571595 (doi: 10.1109/5.752516).
    6. 6)
      • 6. Paul, D.J.: ‘Si/SiGe heterostructures: from material and physics to devices and circuits’, Semicond. Sci. Technol., 2004, 19, (10), pp. R75R108 (doi: 10.1088/0268-1242/19/10/R02).
    7. 7)
      • 7. van der Wagt, J.P.A., Seabaugh, A., Beam III, E.A.: ‘RTD/HFET low standby power SRAM gain cell’. IEDM Techn. Dig., New York, USA, 1996, pp. 425428.
    8. 8)
      • 8. Sudirgo, S., et al: ‘NMOS/SiGe resonant interband tunneling diode static random access memory’. Proc. 64th Device Research Conf., State College, PA, USA, 2006, pp. 265266.
    9. 9)
      • 9. Zuo, D., Kelly, M.J.: ‘Estimating and enhancing the yield of tunneling SRAM cells by simulation’. Int. Semiconductor Device Research Symp., College Park, MD, USA, 2011.
    10. 10)
      • 10. Shao, C., Sexton, J., Missous, M., Kelly, M.J.: ‘Achieving the reproducibility needed for manufacturing semiconductor tunnel devices’, Electron. Lett., 2013, 49, (10), pp. 674675 (doi: 10.1049/el.2013.0782).
    11. 11)
      • 11. Prost, W., et al: ‘Manufacturability and robust design of nanoelectronic logic circuits based on resonant tunnelling diodes’, Int. J. Circuit Theory Appl., 2000, 28, (6), pp. 537552 (doi: 10.1002/1097-007X(200011/12)28:6<537::AID-CTA126>3.0.CO;2-B).
    12. 12)
      • 12. Jin, N., Chung, S.-Y., Yu, R., Heyns, R.M., Berger, P.R., Thompson, P.E.: ‘The effect of spacer thickness on Si-based resonant interband tunneling diode performance and their application to low-power tunneling diode SRAM circuits’, IEEE Trans. Electron Devices, 2006, 53, (9), pp. 22432249 (doi: 10.1109/TED.2006.879678).
    13. 13)
      • 13. Ramesh, A., Park, S.-Y., Berger, P.R.: ‘90 nm 32 × 32 bit tunneling SRAM memory array with 0.5 ns write access time, 1 ns read access time and 0.5 V operation’, IEEE Trans. Circuits Syst. I, Reg. Pprs., 2011, 58, (10), pp. 24322445 (doi: 10.1109/TCSI.2011.2123630).
    14. 14)
      • 14. Ramesh, A., Berger, P.R., Loo, R.: ‘High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition’, Appl. Phys. Lett., 2012, 100, (9), p. 092104 (doi: 10.1063/1.3684834).

Related content

This is a required field
Please enter a valid email address