access icon free Surface-activating-bonding-based low-resistance Si/III-V junctions

The electrical properties of pn junctions, with various semiconductor materials with different doping concentrations fabricated by using surface-activated-bonding (SAB), were investigated by measuring their current-voltage (I-V) characteristics. The I-V characteristics of p +-GaAs/n ++-Si, p +-GaAs/n +-Si, p +-Si/n +-Si, p ++-Si/n +-InGaP, and p +-Si/n +-InGaP junctions showed ohmic-like properties. The interface resistance and the resultant electrical loss decreased with increasing impurity concentration at the interface. These results demonstrate the significance of SAB for fabricating tandem solar cells.

Inspec keywords: indium compounds; impurity states; gallium compounds; III-V semiconductors; gallium arsenide; semiconductor doping; silicon; solar cells; elemental semiconductors; p-n heterojunctions

Other keywords: low-resistance Si-III-V junctions; impurity concentration; Si−InGaP; electrical properties; ohmic-like properties; current-voltage characteristics; SAB; doping concentrations; surface-activating-bonding; pn junctions; Si/InGaP; surface activated bonding; interface resistance; tandem solar cells; GaAs−Si; GaAs/Si; Si/Si; electrical loss; semiconductor materials; Si−Si

Subjects: Doping and implantation of impurities; Semiconductor junctions; Electrical properties of semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions; II-VI and III-V semiconductors; Semiconductor doping; Impurity concentration, distribution, and gradients; Elemental semiconductors

References

    1. 1)
      • 5. Shigekawa, N., Watanabe, N., Higurashi, E.: ‘Electrical properties of Si-based junctions by SAB’. Proc. 3rd Int. IEEE Workshop on Low temperature Bonding for 3D Intergration, Tokyo, Japan, 2012, pp. 109112.
    2. 2)
      • 6. Liang, J., Miyazaki, T., Morimoto, M., Nishida, S., Watanabe, N., Shigekawa, N.: ‘Electrical properties of p-Si/n-GaAs heterojunctions by using surface-activated bonding’, Appl. Phys. Express, 2013, 6, p. 021801 (doi: 10.7567/APEX.6.021801).
    3. 3)
      • 2. Tanabe, K., Morral, A.F.i., Atwater, H.A., Aiken, D.J., Wanlass, M. W.: ‘Direct-bonding GaAs/InGaAs tandem solar cell’, Appl. Phys. Lett., 2006, 89, p. 102106 (doi: 10.1063/1.2347280).
    4. 4)
      • 4. Mizuno, H., Makita, K., Matsubara, K.: ‘Electrical and optical interconnection for mechanically stacked multi-junctions solar cells mediated by metal nanoparticle arrays’, Appl. Phys. Lett., 2012, 101, p. 191111 (doi: 10.1063/1.4766339).
    5. 5)
      • 1. King, R.R., Law, D.C., Edmondson, K.M., Fetzer, C.M., Kinsey, G.S., Yoon, H., Krut, D.D., Ermer, J.H., Sherif, R.A., Karam, N.H.: ‘40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells’, Appl. Phys. Lett., 2007, 90, p. 183516 (doi: 10.1063/1.2734507).
    6. 6)
      • 3. Archer, M.J., Law, D.C., Mesropian, S., Haddad, M., Fetzer, C.M., Ackerman, A.C., Ladous, C., King, R.R., Atwater, H.A.: ‘GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates’, Appl. Phys. Lett., 2008, 92, p. 103503 (doi: 10.1063/1.2887904).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1553
Loading

Related content

content/journals/10.1049/el.2013.1553
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading