access icon free High RF performance improvement using surface passivation technique of AlGaN/GaN HEMTs at K-band application

A surface passivation technique of high electron mobility transistor (HEMT) devices is reported. The passivated HEMT device has a much higher RF performance of FT and F max than a non-passivated one. The AlGaN/GaN HEMT has a short gate length of 0.15 µm using an E-beam lithography system and very low ohmic contact resistance of 1.3 × 10−6 Ωcm−2 using a rapid thermal processing alloy system. In addition, to protect the active layer from the surface trap, an SiO2 thin film passivation process is applied by the plasma-enhanced chemical vapour deposition system. The fabricated AlGaN/GaN HEMT exhibits a maximum drain current of 900 mA/mm and a maximum transconductance of 320 mS/mm. In particular, this device produces excellent RF performance of small-signal characteristics, such as a current gain cut-off frequency (fT ) of 55 GHz and maximum oscillation frequencies (f max) of 130 GHz.

Inspec keywords: gallium compounds; chemical vapour deposition; III-V semiconductors; semiconductor thin films; electron beam lithography; aluminium compounds; high electron mobility transistors; wide band gap semiconductors; rapid thermal processing; contact resistance

Other keywords: K-band application; E-beam lithography system; plasma-enhanced chemical vapour deposition system; thin film passivation process; frequency 55 GHz; frequency 130 GHz; very low ohmic contact resistance; high electron mobility transistor device; small-signal characteristics; size 0.15 mum; SiO2; active layer protection; surface passivation technique; AlGaN-GaN; high RF performance improvement; passivated HEMT device; rapid thermal processing alloy system

Subjects: Other field effect devices; Electrical contacts; Chemical vapour deposition; Lithography (semiconductor technology)

References

    1. 1)
      • 5. Morkoc, H.: ‘Large bandgap SiC, IIIV nitride, and IIVI ZnSe based semiconductor device technologies’, J. Appl. Phys., 1994, 76, (3), pp. 13631398 (doi: 10.1063/1.358463).
    2. 2)
      • 3. Chen, R.: ‘Bottom-gate thin-film transistors based on GaN active channel layer’, IEEE Electron Device Lett., 2013, 34, (4), pp. 517519 (doi: 10.1109/LED.2013.2244556).
    3. 3)
      • 4. Asano, T.: ‘High-power 400-nm-band AlGaInN-based laser diodes with low aspect’, Appl. Phys. Lett., 2002, 80, (19), pp. 34973499 (doi: 10.1063/1.1478157).
    4. 4)
      • 8. Binari, S.C.: ‘AIGaN/GaN HEMTs grown on SIC substrates’, Electron. Lett., 1997, 33, (3), pp. 242243 (doi: 10.1049/el:19970122).
    5. 5)
      • 7. Lu, W.: ‘A comparative study of surface passivation on AlGaN/GaN HEMTs’, Solid-State Electron., 2002, 46, pp. 14411444 (doi: 10.1016/S0038-1101(02)00089-8).
    6. 6)
      • 2. Soltani, A.: ‘Power performance of AlGaN/GaN high-electron-mobility transistors on (110) silicon substrate at 40 GHz’, IEEE. Electron Device Lett., 2013, 34, (4), pp. 490492 (doi: 10.1109/LED.2013.2244841).
    7. 7)
      • 1. Lee, B.H.: ‘Two-stage broadband high-gain W-band amplifier using 0.1-μm metamorphic HEMT technology’, IEEE Electron Device Lett., 2004, 25, (12), pp. 766768 (doi: 10.1109/LED.2004.838506).
    8. 8)
      • 6. Meyer, D.J.: ‘Plasma surface pretreatment effects on silicon nitride passivation of AlGaN/GaN HEMTs’. CS MANTECH Conf., Austin, TX, USA, May 2007, pp. 305307.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1211
Loading

Related content

content/journals/10.1049/el.2013.1211
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
in brief