access icon free Fabrication methods for performance improvement of Cu(In,Ga)Se2 thin film solar cells

Two advanced fabrication methods are introduced: the hydrogen peroxide (H2O2)-added chemical bath deposition technique and molybdenum (Mo) back-contact formation under 3 kW sputter power. The parameters of the short circuit current density (J SC) and conversion efficiency (η) were improved over standard cells when the ZnS buffer layer was deposited in the H2O2-added chemical solution. Otherwise, the fill-factor and η were best at 3 kW Mo sputtering power conditions. Advanced fabrication methods are realised to improve cell performance without modifying the chemical composition of the Cu(In,Ga)Se2 absorption layer.

Inspec keywords: ternary semiconductors; semiconductor thin films; sputter deposition; short-circuit currents; solar cells

Other keywords: thin film solar cells; chemical solution; power 3 kW; sputtering power conditions; buffer layer; molybdenum back-contact formation; H2O2; chemical bath deposition technique; short circuit current density; Cu(InGa)Se2; conversion efficiency; advanced fabrication methods; hydrogen peroxide; sputter power

Subjects: Other semiconductor materials; Photoelectric conversion; solar cells and arrays; Sputter deposition; Solar cells and arrays; Deposition by sputtering

References

    1. 1)
      • 1. Rau, U., Schmidt, M., Jasenek, A., Hanna, G., Schock, H.W.: ‘Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance’, Sol. Energy Mater. Sol. Cells, 2001, 67, pp. 137143 (doi: 10.1016/S0927-0248(00)00273-7).
    2. 2)
      • 8. Braunger, D., Hariskos, D., Bilger, G., Rau, U., Schock, H.W.: ‘Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films’, Thin Solid Films, 2000, 316, pp. 161166 (doi: 10.1016/S0040-6090(99)00777-4).
    3. 3)
      • 3. Repins, I., Contreras, M.A., Egasas, B., DeHart, C., Scharf, J., Perkins, C.L.: ‘19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor’, Prog. Photovolt: Res. Appl., 2008, 16, pp. 235239 (doi: 10.1002/pip.822).
    4. 4)
      • 7. Keyes, B.M., Hadoon, F., Dippo, P., Balcioglu, A., Abulfotuh, F.: ‘Influence of Na on the electro-optical properties of Cu(In,Ga)Se2’. Proc. 26th IEEE Photovoltaic Specialists Conf., Anaheim, CA, USA, October 1997, pp. 479482.
    5. 5)
      • 5. Lin, T.Y., Chen, C.H., Lai, C.H.: ‘Mo effect on one-step sputtering chalcopyrite CIGS thin films’. Proc. 38th IEEE Photovoltaic Specialists Conf., Austin, TX, USA, June 2012, pp. 19992002.
    6. 6)
      • 2. Nakada, T., Mizutani, M.: ‘18% efficiency Cd-free Cu(In, Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers’, Jpn. J. Appl. Phys., 2002, 41, pp. L165L167 (doi: 10.1143/JJAP.41.L165).
    7. 7)
      • 4. Yoon, J.H., Yoon, K.H., Kim, J.K., Kim, W.M., Park, J.K., Lee, T.S., Baik, Y.J., Seong, T.Y., Jeong, J.H.: ‘Effect of the Mo back contact microstructure on the preferred orientation of CIGS thin films’. Proc. 35th IEEE Photovoltaic Specialists Conf., Honolulu, HI, USA, June 2010, pp. 24432447.
    8. 8)
      • 6. Rau, U., Schmitt, M., Engelhardt, F., Seifert, O., Parisi, J., Riedl, W., Rimmasch, J., Karg, F.: ‘Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In,Ga)Se solar cells’, Solid State Commun., 1998, 107, pp. 5963 (doi: 10.1016/S0038-1098(98)00154-9).
    9. 9)
      • 9. Erslev, P.T., Lee, J.W., Shafarman, W.N., Cohen, J.D.: ‘The influence of Na on metastable defect kinetics in CIGS materials’, Thin Solid Films, 2009, 517, pp. 22772281 (doi: 10.1016/j.tsf.2008.10.140).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.1146
Loading

Related content

content/journals/10.1049/el.2013.1146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading