Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Rapid synthesis of gallium oxide resistive random access memory by atomic force microscopy local anodic oxidation

The fabrication of gallium oxide nanodots for the application of resistive random access memory (RRAM) using a process of atomic force microscopy (AFM) local anodic oxidation on an indium tin oxide conductive glass substrate is reported. In the atmospheric environment, an AFM probe tip contacts the gallium film locally. This gallium oxide nanodot acts as the insulator layer in a single unit of the RRAM. The structure describes the insulator layer (GaOx) sandwiched by the top (AFM tip) and bottom (Ga film) electrodes. Using current and voltage biased methods, the device switches from a high-resistance state (HRS) to a low-resistance state (LRS) and reset from LRS to HRS. Low read-voltage is used to distinguish the high/low resistance to present the digital data. Presented results show the ability of atomic force microscopy anodic oxidation to produce 300 nm diameter gallium oxide nanodots on glass substrates for potentially high density RRAMs.

References

    1. 1)
      • 4. Yang, L.M., Song, Y.L., Liu, Y., Wang, Y.L., Tian, X.P., Wang, M., Lin, Y.Y., Huang, R., Zou, Q.T., Wu, J.G.: ‘Linear scaling of Reset current down to 22-nm node for a novel CuxSiyO RRAMIEEE Electron Device Lett., 2012, 33, pp. 8991 (doi: 10.1109/LED.2011.2170654).
    2. 2)
      • 8. Gao, B., Sun, B., Zhang, H., Liu, L., Liu, X., Han, R., Kang, J., Yu, B.: ‘Unified physical model of bipolar oxide-based resistive switching memory’, IEEE Electron Device Lett., 2009, 30, pp. 13261328 (doi: 10.1109/LED.2009.2032308).
    3. 3)
      • 3. Ielmini, D., Nardi, F., Cagli, C.: ‘Universal Reset characteristics of unipolar and bipolar metal-oxide RRAM’, IEEE Trans. Electron Devices,2012, 58, pp. 32463253 (doi: 10.1109/TED.2011.2161088).
    4. 4)
      • 7. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: ‘The missing memristor found’, Nature2008, 453, pp. 8083 (doi: 10.1038/nature06932).
    5. 5)
      • 2. Kundozerova, T.V., Grishin, A.M., Stefanovich, G.B., Velichko, A.A.: ‘Anodic Nb2O5 nonvolatile RRAM’, IEEE Trans. Electron Devices,2012, 59, pp. 11441148 (doi: 10.1109/TED.2011.2182515).
    6. 6)
      • 1. Wu, Y., Lee, B., Wong, H.P.: ‘Al2O3-based RRAM using atomic layer deposition (ALD) with 1 µA- RESET current’, IEEE Electron Device Lett., 2010, 31, pp. 14491451 (doi: 10.1109/LED.2010.2074177).
    7. 7)
      • 6. Tsai, J.T.H., Lee, B.H.B., Yang, M.S.: ‘Fabrication of ZnO thin film transistors by atomic force microscopy nanolithography through zinc thin films’, Phys. Rev. B,2009, 80, (24), pp. 245215243218.
    8. 8)
      • 5. Shingubara, S., Murakami, Y., Morimoto, K., Takahagi, T.: ‘Formation of aluminium nanodot array by combination of nanoindentation and anodic oxidation of aluminium’, Surf. Sci.,2003, 532, pp. 317323.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.0639
Loading

Related content

content/journals/10.1049/el.2013.0639
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
in brief
This is a required field
Please enter a valid email address