access icon free Si wire array waveguide grating with parallel star coupler configuration fabricated by ArF excimer immersion lithography

An Si wire array waveguide grating wavelength demultiplexer fabricated using immersion ArF lithography is reported. The tilt directions of the input and output star couplers are aligned in the same direction to avoid phase error generated at the curved waveguides. A 16 channel device with 200 GHz wavelength spacing was fabricated.

Inspec keywords: argon compounds; optical couplers; immersion lithography; diffraction gratings; silicon; elemental semiconductors; demultiplexing equipment; optical waveguides

Other keywords: wire array waveguide grating; frequency 200 GHz; input star couplers; phase error generation; Si; parallel star coupler; output star couplers; excimer immersion lithography; ArF; wavelength demultiplexer fabricated

Subjects: Lithography (semiconductor technology); Optical waveguides; Multiplexing and switching in optical communication

References

    1. 1)
      • 3. Okayama, H., Shimura, D., Takahashi, H., Seki, M., Toyama, M., Sano, T., Yaegashi, H., Horikawa, T., Sasaki, H., ‘Mach-Zehnder filter using multiple Si waveguide structure sections for width error tolerance’, Electron. Lett., 2012, 48, p.869 (doi: 10.1049/el.2012.1914).
    2. 2)
      • 5. Selvaraja, S.K., Murdoch, G., Milenin, A., Delvaux, C., Ong, P., Pathak, S., Vermeulen, D., Sterckx, G., Winroth, G., Verheyen, P., Lepage, G., Bogaerts, W., Baets, R., Van Campenhout, J., Absil, P.: ‘Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phas errors’. 17th Optoelectron. Commun., Republic of Korea, 2012, p.15.
    3. 3)
      • 1. Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., Takahashi, J., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S., Morita, H., ‘Microphotonic devices based on silicon micro fabrication technology’, IEEE J. Sel. Top. Quantum Electron., 2005, 11, p. 232 (doi: 10.1109/JSTQE.2004.841479).
    4. 4)
      • 4. Dai, D., He, S., ‘Ultrasmall overlapped arrayed-waveguide grating based on Si nanowire waveguides for dense waveguide division demultiplexing’, IEEE Sel. Top Quantum Electron., 2006, 12, p. 1301 (doi: 10.1109/JSTQE.2006.879583).
    5. 5)
      • 3. Okayama, H., Shimura, D., Takahashi, H., Seki, M., Toyama, M., Sano, T., Yaegashi, H., Horikawa, T., Sasaki, H., ‘Mach-Zehnder filter using multiple Si waveguide structure sections for width error tolerance’, Electron. Lett., 2012, 48, p.869 (doi: 10.1049/el.2012.1914).
    6. 6)
      • 6. Takahashi, H., Toyama, M., Seki, M., Shimura, D., Koshino, K., Yokoyama, N., Ohtsuka, M., Sugiyama, A., Ishitsuka, E., Sano, T., Horikawa, T., ‘The impacts of ArF excimer immersion lithography on integrated silicon photonics technology’. Solid State Devices and Mater., Kyoto, Japan, 2012, p. 528.
    7. 7)
      • 2. Bogaerts, W., Selvaraja, S.K., Dumon, P., Brouckaert, J., De Vos, K., Van Thourhout, D., Baets, R., ‘Silicon-on-insulator spectral filters fabricated with CMOS technology’, J. Sel. Areas Quantum Electron., 2010, 16, p. 33 (doi: 10.1109/JSTQE.2009.2039680).
    8. 8)
      • Takahashi, H., Toyama, M., Seki, M., Shimura, D., Koshino, K., Yokoyama, N., Ohtsuka, M., Sugiyama, A., Ishitsuka, E., Sano, T., Horikawa, T.: `The impacts of ArF excimer immersion lithography on integrated silicon photonics technology', Solid State Devices and Mater., 2012, Kyoto, Japan, p. 528.
    9. 9)
    10. 10)
    11. 11)
      • Selvaraja, S.K., Murdoch, G., Milenin, A., Delvaux, C., Ong, P., Pathak, S., Vermeulen, D., Sterckx, G., Winroth, G., Verheyen, P., Lepage, G., Bogaerts, W., Baets, R., Van Campenhout, J., Absil, P.: `Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phas errors', 17thOptoelectron. Commun., 2012, Republic of Korea, p. 15.
    12. 12)
    13. 13)
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2013.0206
Loading

Related content

content/journals/10.1049/el.2013.0206
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
a wave of integration