access icon free Design and tuning of superconducting filter at VHF-band with mechanically switchable interdigital capacitors

A tunable superconducting resonator consisting of a microstrip spiral and an 8-bit switchable interdigital capacitor array, controlled by eight mechanical switches, is presented. The measured tuning range of the resonator is 1 MHz from 198.2 to 199.2 MHz with a fine average resolution of 4 kHz and an unloaded Q of over 55000. A four-pole narrowband superconducting filter at 198.7 MHz with 0.2% fractional bandwidth is designed with this resonator and fabricated. By changing the states of the mechanical switches, the resonant frequency of each resonator and hence the frequency response of the filter is successfully tuned.

Inspec keywords: superconducting filters; mathematical programming; VHF amplifiers; switches; interdigital transducers; frequency response; superconducting resonators

Other keywords: 8-bit switchable interdigital capacitor array; VHF-band; four-pole narrowband superconducting filter; resonant frequency; mechanical switches; fractional bandwidth; mechanically switchable interdigital capacitors; tunable superconducting resonator; microstrip spiral; frequency response

Subjects: Superconducting devices; Superconducting microwave devices; Relays and switches; Waveguide and microwave transmission line components; Optimisation techniques; Amplifiers; Filters and other networks; Acoustic wave devices; General circuit analysis and synthesis methods

References

    1. 1)
      • 3. Willemsen, B.A.: ‘Practical cryogenic receiver front-ends for commercial wireless applications’. IEEE MTT-S Int. Microwave Symp. Tech. Dig., Boston, MA, USA, 2009, pp. 14571460.
    2. 2)
      • 1. Mansour, R.R.: ‘Microwave superconductivity’, IEEE Trans. Microw. Theory Tech., 2002, 50, (3), pp. 750759 (doi: 10.1109/22.989959).
    3. 3)
      • 4. Aita, F., Sekiya, N., Ono, S., Saito, A., Hirano, S., Ohshima, S.: ‘Improvement of filter properties using sapphire and nickel rod trimmers’, IEICE Trans. Electron., 2006, E89-C, (2), pp. 119124 (doi: 10.1093/ietele/e89-c.2.119).
    4. 4)
      • 6. Huang, F., Zhou, M., Yue, L.: ‘A narrowband superconducting filter using spirals with a reversal in winding direction’, IEEE Trans. Microw. Theory Tech., 2006, 54, (11), pp. 39543959 (doi: 10.1109/TMTT.2006.885059).
    5. 5)
      • 2. Abu Hudrouss, A.M., Jayyousi, A.B., Lancaster, M.J.: ‘Dual-band HTS filter using modified dual-spiral resonators’, Electron. Lett., 2010, 46, (3), pp. 221222 (doi: 10.1049/el.2010.2624).
    6. 6)
      • 5. Peng, H.L., Guo, X.B., Zhang, X.P., Wei, B., Cao, B.S., Jin, S.C., Lu, X.X.: ‘Center frequency tuning for a narrowband superconducting filter in the time domain’, IEEE Trans. Appl. Supercond., 2009, 19, (4), pp. 36833687 (doi: 10.1109/TASC.2009.2020865).
    7. 7)
      • 8. Tsuzuki, G., Suzuki, M., Sakakibara, N.: ‘Superconducting filter for IMT-2000 band’, IEEE Trans. Microw. Theory Tech., 2000, 48, (12), pp. 25192525 (doi: 10.1109/22.899007).
    8. 8)
      • 7. Parker, N.J., Goodyear, S.W., Ellis, D.J.P., Humphreys, R.G.: ‘Tuning superconducting microwave filters by laser trimming’, IEEE MTT-S Int. Microw. Symp. Tech. Dig., Seattle, WA, USA, 2002, 3, (2), pp. 19711974.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • Willemsen, B.A.: `Practical cryogenic receiver front-ends for commercial wireless applications', IEEE MTT-S Int. Microwave Symp. Tech. Dig., Boston, MA, USA, p. 1457–1460.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2012.4252
Loading

Related content

content/journals/10.1049/el.2012.4252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
in brief