access icon free Nonvolatile memory device based on SiO2/GaN/AlGaN/GaN heterostructure

Demonstrated is a nonvolatile memory device based on a SiO2/GaN/AlGaN/GaN heterostructure in which the upper GaN layer acted as a storage node. Charges were stored in and released from the upper GaN layer by applying positive and negative gate biases, respectively. The top SiO2 layer acted as a blocking layer. The threshold voltage shift was ∼ 3 V between the program and erase modes and the retention characteristics were very stable over 10000 s.

Inspec keywords: aluminium compounds; III-V semiconductors; random-access storage; wide band gap semiconductors; silicon compounds; gallium compounds

Other keywords: SiO2-GaN-AlGaN-GaN; voltage 3 V; storage node; negative gate biases; positive gate biases; blocking layer; nonvolatile memory device; upper layer

Subjects: Memory circuits; II-VI and III-V semiconductors; Semiconductor storage

References

    1. 1)
      • 2. Wu, Y.F., Kapolnek, D., Ibbetson, J.P., Parikh, P., Keller, B.P., Mishra, U.K.: ‘Very-high power density AlGaN/GaN HEMTs’, IEEE Trans. Electron Devices, 2001, 48, pp. 586590.
    2. 2)
      • 6. Eitan, B., Pavan, P., Bloom, I., Aloni, E., Frommer, A., Finzi, D.: ‘NROM: a novel localized trapping, 2-bit nonvolatile memory cell’, IEEE Electron Device Lett., 2000, 21, pp. 543545 (doi: 10.1109/55.877205).
    3. 3)
      • 1. Nakamura, S., Mukai, T., Senoh, M.: ‘Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes’, Appl. Phys. Lett., 1994, 64, pp. 16871689 (doi: 10.1063/1.111832).
    4. 4)
      • 4. Cha, H.-Y., Wu, H., Chae, S., Spencer, M.G., ‘Gallium nitride nanowire nonvolatile memory device’, J. Appl. Phys., 2006, 100, p. 024307 (doi: 10.1063/1.2216488).
    5. 5)
      • 8. Lee, B., Kirkpatrick, C., Yang, X., Jayanti, S., Suri, R., Roberts, J., Misra, V., ‘Normally-off AlGaN/GaN-on-Si MOSHFETs with TaN floating gates and ALD SiO2 tunnel dielectrics’. Proc. Electron Device Meeting, San Francisco, CA, USA, 2010, pp. 20.6.120.6.4.
    6. 6)
      • 5. Hanafi, H.I., Tiwari, S., Khan, I.: ‘Fast and long retention-time nano-crystal memory’, IEEE Trans. Electron Devices, 1996, 43, pp. 15531558 (doi: 10.1109/16.535349).
    7. 7)
      • 7. Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W.J., Eastman, L.F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., Hilsenbeck, J., ‘Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures’, J. Appl. Phys., 1999, 85, pp. 32223233 (doi: 10.1063/1.369664).
    8. 8)
      • 9. Huang, S., Yang, S., Roberts, J., Chen, K.J.: ‘Characterization of Vth-instability in Al2O3/GaN/AlGaN/GaN MIS-HEMTs by quasi-static C-V measurement’, Phys. Status Solidi C, 2012, 9, pp. 923926 (doi: 10.1002/pssc.201100302).
    9. 9)
      • 3. Lee, J.-G., Park, B.-R., Lee, H.-J., Lee, M., Seo, K.-S., Cha, H.-Y.: ‘State-of-the-art AlGaN/GaN-on-Si heterojunction field effect transistors with dual field plates’, Appl. Phys. Express, 2012, 5, p. 066502 (doi: 10.1143/APEX.5.066502).
    10. 10)
      • 11. Park, B.-R., Lee, J.-G., Lee, H.-J., Lim, J., Seo, K.-S., Cha, H.-Y.: ‘Breakdown voltage enhancement in field plated AlGaN/GaN-on-Si HFETs using mesa-first prepassivation process’, Electron. Lett., 2012, 48, pp. 181182 (doi: 10.1049/el.2011.3778).
    11. 11)
      • 10. Klein, P.B., Binari, S.C., Ikossi, K., Wickenden, A.E., Koleske, D.D., Henry, R.L.: ‘Effect of deep traps on sheet charge in AlGaN/GaN high electron mobility transistors’, Electron. Lett., 2001, 37, pp. 15501551 (doi: 10.1049/el:20011040).
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2012.4083
Loading

Related content

content/journals/10.1049/el.2012.4083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
in brief