access icon free Using gait symmetry to virtually align a triaxial accelerometer during running and walking

During running and walking the human centre of mass experiences a symmetric acceleration along the mediolateral direction. This reported work shows how to exploit this knowledge to correct misalignments of the axes of a trunk-mounted accelerometer with respect to the body axes. After vertical alignment, based on the gravitational component of the signal, the technique computes the virtual rotation angle of the axes lying in the horizontal plane. The chosen angle minimises the autocorrelation of the signal along the mediolateral direction.

Inspec keywords: acceleration; gait analysis; accelerometers; medical signal processing; signal sampling

Other keywords: symmetric acceleration; mediolateral direction; virtually align triaxial accelerometer; gait symmetry; human centre-of-mass; signal autocorrelation; gravitational component; trunk-mounted accelerometer; vertical alignment; body axes; virtual rotation angle; running; walking; signal sampling

Subjects: Signal processing and detection; Physics of body movements; Biomedical measurement and imaging; Digital signal processing; Patient diagnostic methods and instrumentation; Velocity, acceleration and rotation measurement; Biology and medical computing; Velocity, acceleration and rotation measurement

References

    1. 1)
      • 1. Wixted, A.J., Billing, D.C., James, D.A.: ‘Validation of trunk mounted inertial sensors for analysing running biomechanics under field conditions, using synchronously collected foot contact data’, Sports Eng., 2010, 4, pp. 207212 (doi: 10.1007/s12283-010-0043-2).
    2. 2)
      • 4. Moe-Nilssen, R.: ‘A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument’, Clin. Biomech., 1998, pp. 320327 (doi: 10.1016/S0268-0033(98)00089-8).
    3. 3)
      • 7. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsni, P., Vecchio, A.: ‘A smartphone-based fall detection system’, Perv. Mob. Comput., 2012, 8, (6), pp. 883899 (doi: 10.1016/j.pmcj.2012.08.003).
    4. 4)
      • 2. Mohan, P., Padmanabhan, V.N., Ramjee, R.: ‘Nericell: rich monitoring of road and traffic conditions using mobile smartphones’. SenSys '08, Proc. of 6th ACM Conf. on Embedded Network Sensor Systems, Raleigh, NC, USA, 2008, pp.323336.
    5. 5)
      • 3. Shepard, E.L.C., Wilson, R.P., Halsey, L.G., Quintana, F., Laich, A.G., Gleiss, A.C., Liebsch, N., Myers, A.E., Norman, B.: ‘Derivation of body motion via appropriate smoothing of acceleration data’, Aquatic Biol., 2008, 4, pp. 235241 (doi: 10.3354/ab00104).
    6. 6)
      • 5. Moe-Nilssen, R., Helbostad, J.L.: ‘Estimation of gait cycle characteristics by trunk accelerometry’, J. Biomech., 2004, 37, pp. 121126 (doi: 10.1016/S0021-9290(03)00233-1).
    7. 7)
      • 6. Abbate, S., Avvenuti, M., Light, J.: ‘MIMS: a minimally invasive monitoring sensor platform’, IEEE Sensors, 2012, 12, (3), pp. 677684 (doi: 10.1109/JSEN.2011.2149515).
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • Mohan, P., Padmanabhan, V.N., Ramjee, R.: `Nericell: rich monitoring of road and traffic conditions using mobile smartphones', SenSys '08, Proc. of 6th ACM Conf. on Embedded Network Sensor Systems, 2008, Raleigh, NC, USA, p. 323–336.
    13. 13)
    14. 14)
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2012.3763
Loading

Related content

content/journals/10.1049/el.2012.3763
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading