http://iet.metastore.ingenta.com
1887

Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature

Continuous-wave operation of type-I quantum well DFB laser diodes emitting in 3.4 µm wavelength range around room temperature

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Distributed feedback (DFB) laser diodes based on the concept of lateral metal gratings fabricated on type-I quantum well GaInAsSb/AlGaInAsSb material are presented. Monomode emission in the 3.4 µm wavelength range was achieved for the first time for a GaSb based DFB laser diode. Excellent sidemode suppression ratios beyond 30 dB are demonstrated in combination with a modehop-free tuning range around 8.5 nm. Using a specially developed polymer-free DFB processing route allowing improved heat dissipation, laser operation in continuous-wave mode was observed at temperatures up to around 20°C.

References

    1. 1)
      • S.E. Stein , P.J. Linstrom , W.G. Mallard . NIST Chemistry WebBook, NIST Standard Reference Database Number 69.
    2. 2)
      • HITRAN database, http://www.cfa.harvard.edu/HITRAN/, Sept. 2010.
    3. 3)
      • T. Lehnhardt , M. Hümmer , K. Rößner , M. Müller , S. Höfling , A. Forchel . Continuous wave single mode operation of GaInAsSb/GaSb quantum well lasers emitting beyond 3 µm. Appl. Phys. Lett.
    4. 4)
      • A. Farooq , J.B. Jeffries , R.K. Hanson . In situ combustion measurements of H2O and temperature near 2.5 µm using tunable diode laser absorption. Meas. Sci. Technol.
    5. 5)
      • A. Farooq , J.B. Jeffries , R.K. Hanson . CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 µm. Appl. Phy. B, Lasers Opt. , 619 - 628
    6. 6)
      • Garbuzov, D.Z., Maiorov, M., Lee, H., Connolly, J., Khalfin, V., Martinelli, R., Baer, D., Hanson, R., Wang, J., Belenky, G., Donetski, D.: `2–2.7 µm CW room temperature type-I broad contact and ridge waveguide In GaAsSb/AlGaAsSb large cavity QW diode lasers', 4thInt. Conf. on Mid-Infrared Optoelectronics Materials and Devices, 2001, Montpellier, France.
    7. 7)
      • L. Shterengas , G. Belenky , T. Hosoda , G. Kipshidze , S. Suchalkin . Continuous wave operation of diode lasers at 3.36 µm at 12°C. Appl. Phy. Lett.
    8. 8)
      • S. Belahsene , L. Naehle , M. Fischer , J. Koeth , G. Boissier , P. Grech , G. Narcy , A. Vicet , Y. Rouillard . Laser diodes for gas sensing emitting at 3.06 µm at room temperature. IEEE Photonics Technol. Lett. , 1084 - 1086
    9. 9)
      • P. Kluczynski , S. Lundqvist , S. Belahsene , Y. Rouillard . Tunable-diode-laser spectroscopy of C2H2 using a 3.03 µm GaInAsSb/AlGaInAsSb distributed-feedback laser. Opt. Lett. , 24 , 3767 - 3769
    10. 10)
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2010.2733
Loading

Related content

content/journals/10.1049/el.2010.2733
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address