Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Quantum communication technology

Quantum communication technology

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Quantum communication is built on a set of disruptive concepts and technologies. It is driven by fascinating physics and by promising applications. It requires a new mix of competencies, from telecom engineering to theoretical physics, from theoretical computer science to mechanical and electronic engineering. First applications have already found their way into niche markets, and university labs are working on futuristic quantum networks, but most of the surprises are still ahead of us. Quantum communication, and more generally quantum information science and technologies, are here to stay and will have a profound impact on the 21st century.

References

    1. 1)
      • Bennett, Ch.H., Brassard, G.: `Quantum cryptography: public key distribution and coin tossing', Int. conf. Computers, Systems & Signal Processing, 1984, Bangalore, India, 10–12, p. 175–179.
    2. 2)
      • M. Peev . The SECOQC quantum key distribution network in Vienna. New J. Phys.
    3. 3)
      • www.idQuantique.com.
    4. 4)
      • K. Inoue , E. Waks , Y. Yamamoto . Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A
    5. 5)
      • A.E. Lita , A.J. Miller , S.W. Nam . Counting near-infrared single-photons with 95% efficiency. Opt. Exp.
    6. 6)
      • For example in Switzerland, the NCCR – quantum photonics programme http://nccr-qp.epfl.ch.
    7. 7)
      • X.-B. Wang . Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett.
    8. 8)
      • B. Qi , C.-H.F. Fung , H.-K. Lo , X. Ma . Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput.
    9. 9)
      • P. Eraerds , N. Walenta , M. Legre , N. Gisin , H. Zbinden . Quantum key distribution and 1 Gbit/s data encryption over a single fibre. J. Lightwave Technol.
    10. 10)
      • R.H. Hadfield . Single-photon detectors for optical quantum information applications. Nature Photonics
    11. 11)
      • N. Gisin , G. Ribordy , W. Tittel , H. Zbinden . Quantum cryptography. Rev. Mod. Phys. , 1 , 145 - 195
    12. 12)
      • C. Simon . Quantum memories: A review based on the European integrated project Qubit Applications (QAP). Eur. Phys. J. D
    13. 13)
      • N. Sangouard , C. Simon , J. Minar , H. Zbinden , H. de Riedmatten , N. Gisin . Phys. Rev. A. Phys. Rev. A
    14. 14)
      • H.-K. Lo , X. Ma , K. Chen . Decoy state quantum key distribution. Phys. Rev. Lett.
    15. 15)
      • N. Gisin , S. Fasel , B. Kraus , H. Zbinden , G. Ribordy . Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A
    16. 16)
      • Harrington, J.W., Ettinger, J.M., Hugues, R.J., Nordholt, J.R.: `Enhancing practical security of quantum key distribution with a few decoy states', quant-ph/0503002, Los Alamos report LA-UR-05-1156, 2005.
    17. 17)
    18. 18)
    19. 19)
      • See the websites for QuReP at http://quantumrepeaters.eu and Q-ESSENCE: http://qurope.eu/projects.
    20. 20)
      • V. Makarov , A. Anisimov , J. Skaar . Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A
    21. 21)
    22. 22)
      • W.-Y. Hwang . Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett.
    23. 23)
      • An afterpulse is caused by trapped charges in the APD being released when the detector is reset causing another avalanche resulting in a false detection event.
    24. 24)
    25. 25)
      • F. Grosshan , Ph. Grangier . Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett.
    26. 26)
      • Swiss national metrology institute, http://www.metas.ch.
    27. 27)
      • N. Gisin , R. Thew . Quantum communication. Nature Photonics , 165 - 171
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2010.1626
Loading

Related content

content/journals/10.1049/el.2010.1626
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
Correspondence
This article has following corresponding article(s):
Interview
This is a required field
Please enter a valid email address