http://iet.metastore.ingenta.com
1887

Room-temperature continuous-wave operation of type-I GaSb-based lasers at 3.1 µm

Room-temperature continuous-wave operation of type-I GaSb-based lasers at 3.1 µm

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Type-I interband lasers on GaSb were grown by molecular beam epitaxy using 16 nm InGaAsSb compressively-strained quantum wells (QWs) with 30 nm AlInGaAsSb quinary barriers for improved hole confinement. The 3QW active regions were embedded in standard AlGaAsSb waveguides to limit the thickness of quinary material owing to its low growth temperature requirements. In continuous-wave operation, a typical ridge waveguide laser (width 10 µm, length 1214 µm) produced 6 mW total output power at 20°C with a threshold current of 140 mA. The temperature sensitivity of the devices remains a challenge, as evidenced by the dramatically improved performance at 0°C (16 mW total output power, threshold current 74 mA).

References

    1. 1)
      • M. Grau , C. Lin , O. Dier , C. Lauer , M.-C. Amann . Room-temperature operation of 3.26 µm GaSb-based type-I lasers with quinternary AlGalnAsSb barriers. Appl. Phy. Lett.
    2. 2)
      • T. Hosoda , G. Belenky , L. Shterengas , G. Kipshidze , M.V. Kisin . Continuous-wave room temperature operated 3.0 µm type I GaSb-based lasers with quinternary AlInGaAsSb barriers. Appl. Phy. Lett.
    3. 3)
      • L. Shterengas , G. Belenky , T. Hosoda , G. Kipshidze , S. Suchalkin . Continuous wave operation of diode lasers at 3.36 µm at 12°C. Appl. Phys. Lett.
    4. 4)
      • M. Rattunde , J. Schmitz , G. Kaufel , M. Kelemen , J. Weber , J. Wagner . GaSb-based 2.X µm quantum-well diode lasers with low beam divergence and high output power. Appl. Phys. Lett.
    5. 5)
      • M.J. Yang , W.J. Moore , C.H. Yang , R.A. Wilson , B.R. Bennett , B.V. Shanabrook . Determination of temperature dependence of GaSb absorption edge and its application for transmission thermometry. J. Appl. Phys. , 6632 - 6635
    6. 6)
      • G.P. Donati , R. Kaspi , K.J. Malloy . Interpolating semiconductor alloy parameters: application to quaternary III-V band gaps. J. Appl. Phys.
    7. 7)
    8. 8)
      • C.L. Canedy , W.W. Bewley , M. Kim , C.S. Kim , J.A. Nolde , D.C. Larrabee , J.R. Lindle , I. Vurgaftman , J.R. Meyer . High-temperature interband cascade lasers emitting at Λ=3.6−4.3 µm. Appl. Phys. Lett.
http://iet.metastore.ingenta.com/content/journals/10.1049/el.2009.1717
Loading

Related content

content/journals/10.1049/el.2009.1717
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address