http://iet.metastore.ingenta.com
1887

An Application-Oriented Cache Allocation and Prefetching Method for Long-Running Applications in Distributed Storage Systems

An Application-Oriented Cache Allocation and Prefetching Method for Long-Running Applications in Distributed Storage Systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Chinese Journal of Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Characteristics of long-running applications in cloud and big data environment are various and significantly influence the performance of cache systems. The gap between existing cache systems and the increasing performance requirements motivates us to propose the Application-oriented cache allocation and prefetching method (ACAP) to improve data access performance. An application-oriented cache allocation approach is designed based on hit count growth rates for a higher overall hit rate. Two application-oriented sequential prefetching approaches are proposed to improve the hit rate and prefetching accuracy by learning average read sizes of long-running applications. Based on correlation of data accesses, a parallelized correlated-directed prefetching approach is proposed to further increase the hit rate. Above approaches are intergrated to obtain the maximized hit rate and prefetching accuracy. Experimental results on 12 public real system traces show that ACAP achieves 14.03% (up to 33.82%) higher prefetching accuracy and 2.01% (up to 7.54%) higher hit rate compared with the best combination of baselines.

http://iet.metastore.ingenta.com/content/journals/10.1049/cje.2019.05.004
Loading

Related content

content/journals/10.1049/cje.2019.05.004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address