Feedback Learning Based Dead Write Termination for Energy Efficient STT-RAM Caches

Feedback Learning Based Dead Write Termination for Energy Efficient STT-RAM Caches

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
Chinese Journal of Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Spin-torque transfer RAM (STT-RAM) is a promising candidate to replace SRAM for larger Last level cache (LLC). However, it has long write latency and high write energy which diminish the benefit of adopting STT-RAM caches. A common observation for LLC is that a large number of cache blocks have never been referenced again before they are evicted. The write operations for these blocks, which we call dead writes, can be eliminated without incurring subsequent cache misses. To address this issue, a quantitative scheme called Feedback learning based dead write termination (FLDWT) is proposed to improve energy efficiency and performance of STT-RAM based LLC. FLDWT dynamically learns the block access behavior by using data reuse distance and data access frequency, and then classifies the blocks into dead blocks and live blocks. FLDWT terminates dead write block requests and improves the estimation accuracy via feedback information. Compared with STT-RAM baseline in the lastlevel caches, experimental results show that our scheme achieves energy reduction by 44.6% and performance improvement by 12% on average with negligible overhead.

Related content

This is a required field
Please enter a valid email address