Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Deep Boltzmann machine algorithm for accurate medical image analysis for classification of cancerous region

In this research work, a deep learning algorithm is applied to the medical domain to deliver a better healthcare system. For this, a deep learning framework for classification the region of interest pattern of complex hyperspectral medical images is proposed. The performance of computer-aided diagnosis by verifying the region in hyperspectral image by pre and post-cancerous region classification is enhanced. For this a deep Boltzmann machine (DBM) architecture of the bipartite structure as an unsupervised generative model was developed. The performance of DBM is compared with deep convolutional neural network architecture. For implementation, a three-layer unsupervised network with a backpropagation structure is used. From the presented dataset, image patches are collected and classified into two classes, namely non-informative and discriminative classes as labelled classes. The spatial information is used for classification and spectral-spatial representation of class labels is formed. In the labelled classes, the accuracy, false-positive predictions, sensitivity are obtained for the proposed fully-connected network. By the proposed cognitive computation technique an accuracy of 95.5% with 93.5% sensitivity was obtained. From the obtained classification, accuracy and success rate DBM provide a better classification of complex images compared to traditional convolution network.

References

    1. 1)
      • 23. Shell, J., Gregory, W.D.: ‘Efficient cancer detection using multiple neural networks’, IEEE. J. Transl. Eng. Health Med., 2017, 5, p.2800607, DOI: 10.1109/JTEHM.2017.2757471.
    2. 2)
      • 16. Pike, R., Lu, G., Wang, D., et al: ‘A Minimum spanning forest-based method for non-invasive cancer detection with hyperspectral imaging’, IEEE Trans. Biomed. Eng., 2016, 63, (3), pp. 653663.
    3. 3)
      • 2. Han, Y., Ye, J.C.: ‘Framing U-net via deep convolutional framelets: application to sparse-view CT’, IEEE Trans. Med Imaging, 2018, 37, (6), pp. 14181429.
    4. 4)
      • 12. Salakhutdinov, R., Hinton, G.: ‘An efficient learning procedure for deep Boltzmann machines’, Neural Comput., 2012, 24, (8), pp. 19672006.
    5. 5)
      • 26. He, H., Ma, Y.: ‘Imbalanced learning: foundations, algorithms, and applications’ (Wiley, New York, USA, 2013, 1st edn.).
    6. 6)
      • 10. Warram, J.M., de Boer, E, Moore, L.S., et al: ‘A ratiometric threshold for determining presence of cancer during fluorescence-guided surgery’, J Surg. Oncol., 2015, 112, pp. 28.
    7. 7)
      • 9. Wohlberg, B.: ‘Efficient algorithms for convolutional sparse representations’, IEEE Trans. Image Process., 2016, 25, (10), pp. 301315.
    8. 8)
      • 15. Madabhushi, A., Lee, G.: ‘Image analysis and machine learning in digital pathology: challenges and opportunities’, Med. Image Anal., 2016, 33, pp. 170175.
    9. 9)
      • 14. Ge, H., Wang, L., Liu, Y., et al: ‘Hyperspectral image classification based on adaptive-weighted LLE and clustering-based FSVMs’, IET Image Process., 2018, 12, (6), pp. 941947.
    10. 10)
      • 27. Chang, C.H.: ‘Deep and shallow architecture of multilayer neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (10), pp. 24772486.
    11. 11)
      • 8. Wang, G., Kalra, M., Orton, C.G.: ‘Machine learning will transform radiology significantly within the next 5 years’, Med. Phys., 2017, 44, (6), pp. 20412044.
    12. 12)
      • 19. Na, L., Li, T., Ren, X., et al: ‘A deep learning scheme for motor imagery classification based on restricted Boltzmann machines’, IEEE Trans. Neural Syst. Rehabil. Eng., 2017, 25, (6), pp. 566576.
    13. 13)
      • 11. Srivastava, N., Salakhutdinov, R.: ‘Multimodal learning with deep Boltzmann machines’, Adv. Neural. Inf. Process. Syst., 2012, 25, pp. 22312239.
    14. 14)
      • 5. Ongie, G., Jacob, M.: ‘Off-the-grid recovery of piecewise constant images from few Fourier samples’, SIAM J. Imag. Sci., 2015, 9, (3), pp. 10041041.
    15. 15)
      • 4. Wang, G.: ‘A perspective on deep imaging’, IEEE Access, 2016, 4, pp. 89148924.
    16. 16)
      • 6. Goodfellow, I, Bengio, Y, Courville, A, et al: ‘Deep learning’ (MIT Press, Cambridge, USA, 2016, 1st edn.).
    17. 17)
      • 24. Fuyong, X., Xie, Y., Su, H., et al: ‘Deep learning in microscopy image analysis: a survey’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 1, pp. 119, DOI: 10.1109/TNNLS.2017.2766168.
    18. 18)
      • 30. Mohsena, H., El-Dahshan, E-S.A., El-Horbaty, E.-S.M., et al: ‘Classification using deep learning neural networks for brain tumors’, Future Comput. Inf. J., 2018, 3, (1), pp. 6871.
    19. 19)
      • 25. Hou, W., Gao, X., Tao, D., et al: ‘Blind image quality assessment via deep learning’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (6), pp. 12751286.
    20. 20)
      • 20. LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, pp. 436444.
    21. 21)
      • 1. Ghesu, F.C., Krubasik, E, Georgescu, B., et al: ‘Marginal space deep learning: efficient architecture for volumetric image parsing’, IEEE Trans. Med Imaging, 2016, 35, (5), pp. 12171228.
    22. 22)
      • 3. Jin, K.H., McCann, M.T., Froustey, E., et al: ‘Deep convolutional neural network for inverse problems in imaging’, IEEE Trans. Image Process., 2017, 26, (9), pp. 45094522.
    23. 23)
      • 21. Cai, X., Wei, J., Wenv, , et al: ‘Local and global preserving semi supervised dimensionality reduction based on random subspace for cancer classification’, IEEE J. Biomed. Health Inf., 2014, 18, (2), pp. 500507.
    24. 24)
      • 7. Yuan, Y., Lin, J., Wang, Q.: ‘Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization’, IEEE Trans. Cybern., 2015, 46, (12), pp. 29662977.
    25. 25)
      • 17. Hao, S., Wang, L., Bruzzone, L., et al: ‘Spatial-dictionary for collaborative representation classification of hyperspectral images’, Multimedia Tools Appl., 2016, 75, (15), pp. 92419254.
    26. 26)
      • 13. Lu, G., Fei, B.: ‘Medical hyperspectral imaging: a review’, J. Biomed. Opt., 2014, 19, pp. 109110.
    27. 27)
      • 22. Dalal, B., Kun, Z., Sayed, M.: ‘A classification of breast cancer based on histology images using convolutional neural networks’, IEEE Access, 2018, 6, pp. 2468024693.
    28. 28)
      • 18. Philip Chen, C.L., Zhang, C.Y., Chen, L., et al: ‘Fuzzy restricted Boltzmann machine for the enhancement of deep learning’, IEEE Trans. Fuzzy Syst., 2015, 23, (6), pp. 21632173.
    29. 29)
      • 28. Pandia Rajan, J., Edward Rajan, S.: ‘Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm’, J. Cancer Res. Clin. Oncol., 2019, 145, (4), pp. 829837.
    30. 30)
      • 29. Li, J., Zhang, T., Luo, W., et al: ‘Sparseness analysis in the pretraining of deep neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (6), pp. 14251438.
http://iet.metastore.ingenta.com/content/journals/10.1049/ccs.2019.0004
Loading

Related content

content/journals/10.1049/ccs.2019.0004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address