Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess c 2 AIDER: cognitive cloud exoskeleton system and its applications

Lower extremity exoskeleton systems have been widely applied in walking assistance, rehabilitation, and augmentation-related applications merely through human-exoskeleton movement collaboration, which cannot analyse cognitive load and pressure of pilots. Cognitive exoskeleton systems can reinforce cognitive cooperation of the human-exoskeleton systems through perception and assessment. Cognitive cloud exoskeleton systems can enhance the ability of the continuous learning and transfer learning of the exoskeleton systems through cloud brain platform. This paper presents a cognitive cloud exoskeleton system Cognitive Cloud AssItive DEvice for paralysed patient (c 2 AIDER). The main idea is that the cooperation between the c 2 AIDER system and pilots is more intelligent and natural through cloud brain platform, which can achieve high-performance computing thus providing better walking assistance for pilots.

References

    1. 1)
      • 6. Losey, D., McDonald, C.G., Battaglia, E., et al: ‘A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction’, Appl. Mech. Rev., 2018, 70, (1), pp. 010804.
    2. 2)
      • 32. ‘Robotic operating system’. Available at http://www.ros.org/, accessed 14 November 2018.
    3. 3)
      • 23. Fitzpatrick, R., Burke, D., Gandevia, S.C.: ‘Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans’, J. Physiol., 1994, 478, (2), pp. 363372.
    4. 4)
      • 5. Taketomiu, T., Sankai, Y.: ‘Stair ascent assistance for cerebral palsy with robot suit HAL’. IEEE/SICE Int. Symp. on System Integratino, Fukuoka, Japan, December 2012, pp. 331336.
    5. 5)
      • 10. Duong Mien, K., Hong, C., Tran Huu, T., et al: ‘Minimizing human-exoskeleton interaction force by using global fast sliding mode control’, Int. J. Control Autom. Syst., 2016, 14, (4), pp. 10641072.
    6. 6)
      • 2. Zeilig, G., Weingarden, H., Zwecker, M., et al: ‘Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study’, J. Am. Paraplegia Soc., 2012, 35, (2), pp. 96101.
    7. 7)
      • 35. Hangming, Z.: ‘Design and implementation of a hybrid control system for autonomous carrying-load lower extremity exoskeleton’. Master Thesis, University of Electronic Science and Technology of China, 2014.
    8. 8)
      • 16. Argall, B.D.: ‘Turning assistive machines into assistive robots’, Int. Soc. Opt. Eng., 2015, 9370.
    9. 9)
      • 13. Pehlivan, A.U., Losey, D.P., O'Malley, M.K.: ‘Minimal assist-as-needed controller for upper limb robotic rehabilitation’, IEEE Trans. Robot.., 2016, 32, (1), pp. 113124.
    10. 10)
      • 26. Singh, M., Rajan, M.A., Shivraj, V.L., et al: ‘Secure MQTT for internet of things (IoT)’. Int. Conf. on Communication Systems and Network Technologies, Gwalior, India, 2015, pp. 746751.
    11. 11)
      • 18. Yan, T., Cempini, M., Oddo, C.M., et al: ‘Review of assistive strategies in powered lower-limb orthoses and exoskeletons’, Robot. Auton. Syst.., 2015, 64, pp. 120136.
    12. 12)
      • 11. Mien Ka, D., Cheng, H., Huu Toan, T., et al: ‘Minimizing human-exoskeleton interaction force using compensation for dynamic uncertainty error with adaptive RBF network’, J. Intell. Robot. Syst., 2016, 82, (3), pp. 413433.
    13. 13)
      • 12. Santis, A.D., Siciliano, B., Luca, A.D., et al: ‘An atlas of physical human-robot interaction’, Mech. Mach. Theory., 2008, 43, (3), pp. 253270.
    14. 14)
      • 29. Min, F.: ‘Research on exoskeleton robot cloud-brain architecture and learning algorithm’. Master Thesis, University of Electronic Science and Technology of China, 2018.
    15. 15)
      • 9. Nathanael, J., Themistoklis, C., Etienne, B.: ‘A framework to describe, analyze and generate interactive motor behaviors’, Plos One., 2012, 7, (11), p. e49945.
    16. 16)
      • 14. Gopinath, D., Jain, S., Argall, B.D.: ‘Human-in-the-loop optimization of shared autonomy in assistive robotics’, IEEE Robot. Autom. Lett., 2017, 2, (1), pp. 247254.
    17. 17)
      • 25. Hu, G., Tay, W.P., Wen, Y.: ‘Cloud robotics: architecture, challenges and applications’, IEEE Netw., 2012, 26, (3), pp. 2128.
    18. 18)
      • 3. Hartigan, C., Kandilakis, C., Dalley, S., et al: ‘Mobility outcomes following five training sessions with a powered exoskeleton’, Top. Spinal Cord Injury Rehabil., 2015, 21, (2), pp. 9399.
    19. 19)
      • 8. Yu, W., Alqasemi, R., Dubey, R., et al: ‘Telemanipulation assistance based on motion intention recognition’. IEEE Int. Conf. on Robotics and Automation, Orlando, USA, May 2006.
    20. 20)
      • 20. Kilicarslan, A., Prasad, S., Grossman, R.G., et al: ‘High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton’. Conf. Proc. IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 2013, p. 5606.
    21. 21)
      • 33. ‘Hadoop distributed file system’, 2009. Available at http://hadoop.apache.org/hdfs/, accessed 14 November 2018.
    22. 22)
      • 34. Dean, J., Ghemawat, S.: ‘Mapreduce: simplified data processing on large clusters’, Commun. ACM, 2008, 54, (1), pp. 107113.
    23. 23)
      • 27. Proulx, T., Heine, S.J.: ‘Connections from Kafka: exposure to meaning threats improves implicit learning of an artificial grammar’, Psychol. Sci., 2009, 20, (9), pp. 11251131.
    24. 24)
      • 21. Sun, X., Li, Z., Cheng, H., et al: ‘Compliant training control of ankle joint by exoskeleton with human EMG-torque interface’, Assem. Autom., 2017, 37, (3), pp. 349355.
    25. 25)
      • 4. Kawabata, T., Satoh, H., Sankai, Y.: ‘Working posture control of robot suit HAL for reducing structural stress’. Int. Conf. on Robotics and Biomimetics, Guilin, China, December 2009, pp. 20132018.
    26. 26)
      • 24. Arumugam, R., Enti, V.R., Liu, B., et al: ‘DAvinci: a cloud computing framework for service robots’. IEEE Int. Conf. on Robotics and Automation, Anchorage, USA, May 2010, pp. 30843089.
    27. 27)
      • 28. Nakagawa, S., Igarashi, N., Tsuchiya, N., et al: ‘An implementation of a distributed service framework for cloud-based robot services’. The 38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, QC, 2012, pp. 41484153.
    28. 28)
      • 7. Blank, A.A., French, J.A., Pehlivan, A.U., et al: ‘Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy’, Current Phys. Med. Rehabil. Rep., 2014, 2, (3), pp. 184195.
    29. 29)
      • 17. Fong, T., Thorpe, C., Baur, C.: ‘Collaboration, dialogue, and human-robot interaction’. Int. Symp. on Robotics Research, Victoria, Australia, 2001, vol. 7, pp. 100148.
    30. 30)
      • 31. Kehoe, B., Matsukawa, A., Candido, S., et al: ‘Cloud-based robot grasping with the google object recognition engine’. IEEE Int. Conf. on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 42634270.
    31. 31)
      • 30. Salmeron-Garci'a, J., Inigo-Blasco, P., Di'az-del-Ri'o, F., et al: ‘A tradeoff analysis of a cloud-based robot navigation assistant using stereo image processing’, IEEE Trans. Autom. Sci. Eng., 2015, 12, (2), pp. 444454.
    32. 32)
      • 22. Woodworth, R.S.: ‘Accuracy of voluntary movement’, Psychol. Monogr., 2011, 3, (3), p. i114.
    33. 33)
      • 1. Pransky, J.: ‘The pransky interview: Russ Angold, co-founder and president of EksoTM labs’, Ind. Robot., 2014, 41, (4), pp. 329334.
    34. 34)
      • 19. Kawamoto, H., Taal, S., Niniss, H., et al: ‘Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia’. Int. Conf. of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010, pp. 462466.
    35. 35)
      • 15. Goodrich, M.A., Schultz, A.C.: ‘Human-robot interaction: a survey’, Found. Trends Hum.-Comput. Interact., 2007, 1, (3), pp. 203275.
http://iet.metastore.ingenta.com/content/journals/10.1049/ccs.2018.0012
Loading

Related content

content/journals/10.1049/ccs.2018.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address