http://iet.metastore.ingenta.com
1887

access icon openaccess c 2 AIDER: cognitive cloud exoskeleton system and its applications

Loading full text...

Full text loading...

/deliver/fulltext/ccs/1/2/CCS.2018.0012.html;jsessionid=1cnt0rm7tj4gh.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fccs.2018.0012&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Pransky, J.: ‘The pransky interview: Russ Angold, co-founder and president of EksoTM labs’, Ind. Robot., 2014, 41, (4), pp. 329334.
    2. 2)
      • 2. Zeilig, G., Weingarden, H., Zwecker, M., et al: ‘Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study’, J. Am. Paraplegia Soc., 2012, 35, (2), pp. 96101.
    3. 3)
      • 3. Hartigan, C., Kandilakis, C., Dalley, S., et al: ‘Mobility outcomes following five training sessions with a powered exoskeleton’, Top. Spinal Cord Injury Rehabil., 2015, 21, (2), pp. 9399.
    4. 4)
      • 4. Kawabata, T., Satoh, H., Sankai, Y.: ‘Working posture control of robot suit HAL for reducing structural stress’. Int. Conf. on Robotics and Biomimetics, Guilin, China, December 2009, pp. 20132018.
    5. 5)
      • 5. Taketomiu, T., Sankai, Y.: ‘Stair ascent assistance for cerebral palsy with robot suit HAL’. IEEE/SICE Int. Symp. on System Integratino, Fukuoka, Japan, December 2012, pp. 331336.
    6. 6)
      • 6. Losey, D., McDonald, C.G., Battaglia, E., et al: ‘A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction’, Appl. Mech. Rev., 2018, 70, (1), pp. 010804.
    7. 7)
      • 7. Blank, A.A., French, J.A., Pehlivan, A.U., et al: ‘Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy’, Current Phys. Med. Rehabil. Rep., 2014, 2, (3), pp. 184195.
    8. 8)
      • 8. Yu, W., Alqasemi, R., Dubey, R., et al: ‘Telemanipulation assistance based on motion intention recognition’. IEEE Int. Conf. on Robotics and Automation, Orlando, USA, May 2006.
    9. 9)
      • 9. Nathanael, J., Themistoklis, C., Etienne, B.: ‘A framework to describe, analyze and generate interactive motor behaviors’, Plos One., 2012, 7, (11), p. e49945.
    10. 10)
      • 10. Duong Mien, K., Hong, C., Tran Huu, T., et al: ‘Minimizing human-exoskeleton interaction force by using global fast sliding mode control’, Int. J. Control Autom. Syst., 2016, 14, (4), pp. 10641072.
    11. 11)
      • 11. Mien Ka, D., Cheng, H., Huu Toan, T., et al: ‘Minimizing human-exoskeleton interaction force using compensation for dynamic uncertainty error with adaptive RBF network’, J. Intell. Robot. Syst., 2016, 82, (3), pp. 413433.
    12. 12)
      • 12. Santis, A.D., Siciliano, B., Luca, A.D., et al: ‘An atlas of physical human-robot interaction’, Mech. Mach. Theory., 2008, 43, (3), pp. 253270.
    13. 13)
      • 13. Pehlivan, A.U., Losey, D.P., O'Malley, M.K.: ‘Minimal assist-as-needed controller for upper limb robotic rehabilitation’, IEEE Trans. Robot.., 2016, 32, (1), pp. 113124.
    14. 14)
      • 14. Gopinath, D., Jain, S., Argall, B.D.: ‘Human-in-the-loop optimization of shared autonomy in assistive robotics’, IEEE Robot. Autom. Lett., 2017, 2, (1), pp. 247254.
    15. 15)
      • 15. Goodrich, M.A., Schultz, A.C.: ‘Human-robot interaction: a survey’, Found. Trends Hum.-Comput. Interact., 2007, 1, (3), pp. 203275.
    16. 16)
      • 16. Argall, B.D.: ‘Turning assistive machines into assistive robots’, Int. Soc. Opt. Eng., 2015, 9370.
    17. 17)
      • 17. Fong, T., Thorpe, C., Baur, C.: ‘Collaboration, dialogue, and human-robot interaction’. Int. Symp. on Robotics Research, Victoria, Australia, 2001, vol. 7, pp. 100148.
    18. 18)
      • 18. Yan, T., Cempini, M., Oddo, C.M., et al: ‘Review of assistive strategies in powered lower-limb orthoses and exoskeletons’, Robot. Auton. Syst.., 2015, 64, pp. 120136.
    19. 19)
      • 19. Kawamoto, H., Taal, S., Niniss, H., et al: ‘Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia’. Int. Conf. of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010, pp. 462466.
    20. 20)
      • 20. Kilicarslan, A., Prasad, S., Grossman, R.G., et al: ‘High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton’. Conf. Proc. IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 2013, p. 5606.
    21. 21)
      • 21. Sun, X., Li, Z., Cheng, H., et al: ‘Compliant training control of ankle joint by exoskeleton with human EMG-torque interface’, Assem. Autom., 2017, 37, (3), pp. 349355.
    22. 22)
      • 22. Woodworth, R.S.: ‘Accuracy of voluntary movement’, Psychol. Monogr., 2011, 3, (3), p. i114.
    23. 23)
      • 23. Fitzpatrick, R., Burke, D., Gandevia, S.C.: ‘Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans’, J. Physiol., 1994, 478, (2), pp. 363372.
    24. 24)
      • 24. Arumugam, R., Enti, V.R., Liu, B., et al: ‘DAvinci: a cloud computing framework for service robots’. IEEE Int. Conf. on Robotics and Automation, Anchorage, USA, May 2010, pp. 30843089.
    25. 25)
      • 25. Hu, G., Tay, W.P., Wen, Y.: ‘Cloud robotics: architecture, challenges and applications’, IEEE Netw., 2012, 26, (3), pp. 2128.
    26. 26)
      • 26. Singh, M., Rajan, M.A., Shivraj, V.L., et al: ‘Secure MQTT for internet of things (IoT)’. Int. Conf. on Communication Systems and Network Technologies, Gwalior, India, 2015, pp. 746751.
    27. 27)
      • 27. Proulx, T., Heine, S.J.: ‘Connections from Kafka: exposure to meaning threats improves implicit learning of an artificial grammar’, Psychol. Sci., 2009, 20, (9), pp. 11251131.
    28. 28)
      • 28. Nakagawa, S., Igarashi, N., Tsuchiya, N., et al: ‘An implementation of a distributed service framework for cloud-based robot services’. The 38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, QC, 2012, pp. 41484153.
    29. 29)
      • 29. Min, F.: ‘Research on exoskeleton robot cloud-brain architecture and learning algorithm’. Master Thesis, University of Electronic Science and Technology of China, 2018.
    30. 30)
      • 30. Salmeron-Garci'a, J., Inigo-Blasco, P., Di'az-del-Ri'o, F., et al: ‘A tradeoff analysis of a cloud-based robot navigation assistant using stereo image processing’, IEEE Trans. Autom. Sci. Eng., 2015, 12, (2), pp. 444454.
    31. 31)
      • 31. Kehoe, B., Matsukawa, A., Candido, S., et al: ‘Cloud-based robot grasping with the google object recognition engine’. IEEE Int. Conf. on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 42634270.
    32. 32)
      • 32. ‘Robotic operating system’. Available at http://www.ros.org/, accessed 14 November 2018.
    33. 33)
      • 33. ‘Hadoop distributed file system’, 2009. Available at http://hadoop.apache.org/hdfs/, accessed 14 November 2018.
    34. 34)
      • 34. Dean, J., Ghemawat, S.: ‘Mapreduce: simplified data processing on large clusters’, Commun. ACM, 2008, 54, (1), pp. 107113.
    35. 35)
      • 35. Hangming, Z.: ‘Design and implementation of a hybrid control system for autonomous carrying-load lower extremity exoskeleton’. Master Thesis, University of Electronic Science and Technology of China, 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/ccs.2018.0012
Loading

Related content

content/journals/10.1049/ccs.2018.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address