Development of numerical cognition in children and artificial systems: a review of the current knowledge and proposals for multi-disciplinary research
- Author(s): Alessandro Di Nuovo 1 and Tim Jay 2
-
-
View affiliations
-
Affiliations:
1:
Sheffield Robotics, Department of Computing , Sheffield Hallam University , Howard Street, Sheffield , UK ;
2: Sheffield Institute of Education, Sheffield Hallam University , Howard Street, Sheffield , UK
-
Affiliations:
1:
Sheffield Robotics, Department of Computing , Sheffield Hallam University , Howard Street, Sheffield , UK ;
- Source:
Volume 1, Issue 1,
March
2019,
p.
2 – 11
DOI: 10.1049/ccs.2018.0004 , Online ISSN 2517-7567
Numerical cognition is a distinctive component of human intelligence such that the observation of its practice provides a window in high-level brain function. The modelling of numerical abilities in artificial cognitive systems can help to confirm existing child development hypotheses and define new ones by means of computational simulations. Meanwhile, new research will help to discover innovative principles for the design of artificial agents with advanced reasoning capabilities and clarify the underlying algorithms (e.g. deep learning) that can be highly effective but difficult to understand for humans. This study promotes new investigation by providing a common resource for researchers with different backgrounds, including computer science, robotics, neuroscience, psychology, and education, who are interested in pursuing scientific collaboration on mutually stimulating research on this topic. The study emphasises the fundamental role of embodiment in the initial development of numerical cognition in children. This strong relationship with the body motivates the cognitive developmental robotics (CDR) approach for new research that can (among others) help standardise data collection and provide open databases for benchmarking computational models. Furthermore, the authors discuss the potential application of robots in classrooms and argue that the CDR approach can be extended to assist educators and favour mathematical education.
Inspec keywords: mathematics computing; brain; computer aided instruction; cognition; psychology; robots; neurophysiology; learning (artificial intelligence); software agents
Other keywords: computational simulations; artificial systems; children; child development hypotheses; advanced reasoning capabilities; human intelligence; numerical cognition; cognitive developmental robotics approach; artificial cognitive systems; artificial agents; mathematical education; high-level brain function
Subjects: Robotics; Knowledge engineering techniques; Computer-aided instruction; Mathematics computing; Biology and medical computing
References
-
-
1)
-
89. Elman, J.L.: ‘Finding structure in time’, Cogn. Sci., 1990, 14, (2), pp. 179–211.
-
-
2)
-
33. Toh, L.P.E., Causo, A., Tzuo, P.-W., et al: ‘A review on the use of robots in education and young children’, J. Educ. Technol. Soc., 2016, 19, (2), p. 148.
-
-
3)
-
61. Conson, M., Mazzarella, E., Trojano, L.: ‘Numbers are represented in egocentric space: effects of numerical cues and spatial reference frames on hand laterality judgements’, Neurosci. Lett., 2009, 452, (2), pp. 176–180.
-
-
4)
-
41. Conti, D., Di Nuovo, A., Cirasa, C., et al: ‘A comparison of kindergarten storytelling by human and humanoid robot with different social behavior’. Proc. Companion of the 2017 ACM/IEEE Int. Conf. on Human-Robot Interaction – HRI'17’, Vienna, Austria, 2017, pp. 97–98.
-
-
5)
-
101. Casey, M.C., Ahmad, K.: ‘A competitive neural model of small number detection’, Neural Netw., 2006, 19, (10), pp. 1475–1489.
-
-
6)
-
24. Cangelosi, A., Morse, A., Di Nuovo, A., et al: ‘Embodied language and number learning in developmental robots’, in Fischer, M.H., Coello, Y.: ‘Conceptual and interactive embodiment: foundations of embodied cognition’ (Routledge, Massachusetts, USA, 2016), pp. 275–293.
-
-
7)
-
15. Wai, J., Lubinski, D., Benbow, C.P.: ‘Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance’, J. Educ. Psychol., 2009, 101, (4), pp. 817–835.
-
-
8)
-
85. Lories, G., Aubrun, A., Seron, X.: ‘Lesioning Mccloskey and Lindemann's (1992) MATHNET: the effect of damage location and amount’, J. Biol. Syst., 1994, 02, (3), pp. 335–356.
-
-
9)
-
8. Goldin-Meadow, S.: ‘The role of gesture in communication and thinking’, Trends Cogn. Sci., 1999, 3, (11), pp. 419–429.
-
-
10)
-
40. Ioannou, A., Andreou, E., Christofi, M.: ‘Pre-schoolers’ interest and caring behaviour around a humanoid robot’, TechTrends, 2015, 59, (2), p. 23.
-
-
11)
-
4. Dackermann, T., Fischer, U., Nuerk, H.C., et al: ‘Applying embodied cognition: from useful interventions and their theoretical underpinnings to practical applications’, ZDM, Math. Educ., 2017, 49, pp. 545–557.
-
-
12)
-
139. Nolan, J., McBride, M.: ‘Beyond gamification: reconceptualizing game-based learning in early childhood environments’, Inf. Commun. Soc., 2014, 17, (5), pp. 594–608.
-
-
13)
-
58. Domahs, F., Moeller, K., Huber, S., et al: ‘Embodied numerosity: implicit hand-based representations influence symbolic number processing across cultures’, Cognition, 2010, 116, (2), pp. 251–266.
-
-
14)
-
118. Hinton, G.E.: ‘Training products of experts by minimizing contrastive divergence’, Neural Comput., 2002, 14, (8), pp. 1771–1800.
-
-
15)
-
90. Werbos, P.J.: ‘Backpropagation through time: what it does and how to do it’, Proc. IEEE, 1990, 78, (10), pp. 1550–1560.
-
-
16)
-
72. Sato, M., Cattaneo, L., Rizzolatti, G., et al: ‘Numbers within our hands: modulation of corticospinal excitability of hand muscles during numerical judgment’, J. Cogn. Neurosci., 2007, 19, pp. 684–693.
-
-
17)
-
51. Moeller, K., Fischer, U., Link, T., et al: ‘Learning and development of embodied numerosity’, Cogn. Process., 2012, 13, (1), pp. 271–274.
-
-
18)
-
99. Fuson, K.C., Richards, J., Briars, D.J.: ‘The acquisition and elaboration of the number word sequence’, in Brainerd, C.J. (Ed.): ‘Children's logical and mathematical cognition: progress in cognitive development research’ (Springer, Germany, 1982), pp. 33–92.
-
-
19)
-
49. Butterworth, B.: ‘The mathematical brain’ (McMillan, United Kingdom, 1999).
-
-
20)
-
60. Dehaene, S., Bossini, S., Giraux, P.: ‘The mental representation of parity and number magnitude’, J. Exp. Psychol. Gen., 1993, 122, (3), pp. 371–396.
-
-
21)
-
131. Zorzi, M., Butterworth, B.: ‘A computational model of number comparison’. Proc. 21st Annual Conf. of the Cognitive Science Society, Erlbaum, 1999, pp. 778–783.
-
-
22)
-
18. Sandini, G., Metta, G., Vernon, D.: ‘The iCub Cognitive Humanoid Robot: An Open-System Research Platform for Enactive Cognition’, in Lungarella, M., Pfeifer, R., Iida, F., et al (Eds.): ‘50 years of artificial intelligence’ (Springer-Verlag, Germany, 2007), pp. 358–369.
-
-
23)
-
138. Gelman, R., Meck, E.: ‘Preschoolers’ counting: principles before skill’, Cognition, 1983, 13, (3), pp. 343–359.
-
-
24)
-
105. Nieder, A., Miller, E.K.: ‘Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex’, Neuron, 2003, 37, (1), pp. 149–157.
-
-
25)
-
93. Anderson, J.R., Matessa, M., Lebiere, C.: ‘ACT-R: a theory of higher level cognition and its relation to visual attention’, Hum.-Comput. Interact., 1997, 12, (4), pp. 439–462.
-
-
26)
-
135. Hubbard, E.M., Piazza, M., Pinel, P., et al: ‘Interactions between number and space in parietal cortex’, Nat. Rev. Neurosci., 2005, 6, p. 435.
-
-
27)
-
78. Gracia-Bafalluy, M., Noël, M.-P.: ‘Does finger training increase young children's numerical performance?’, Cortex, 2008, 44, (4), pp. 368–375.
-
-
28)
-
53. Gunderson, E.A., Spaepen, E., Gibson, D., et al: ‘Gesture as a window onto children's number knowledge’, Cognition, 2015, 144, pp. 14–28.
-
-
29)
-
69. Peters, L., De Smedt, B.: ‘Arithmetic in the developing brain: a review of brain imaging studies’, Dev. Cogn. Neurosci., 2018, 30, pp. 265–279.
-
-
30)
-
20. Lungarella, M., Metta, G., Pfeifer, R., et al: ‘Developmental robotics: a survey’, Connect. Sci., 2003, 15, (4), pp. 151–190.
-
-
31)
-
70. Andres, M., Michaux, N., Pesenti, M.: ‘Common substrate for mental arithmetic and finger representation in the parietal cortex’, Neuroimage, 2012, 62, (3), pp. 1520–1528.
-
-
32)
-
88. Rodriguez, P., Wiles, J., Elman, J.L.: ‘A recurrent neural network that learns to count’, Connect. Sci., 1999, 11, (1), pp. 5–40.
-
-
33)
-
73. Alibali, M.W., Nathan, M.J.: ‘Embodiment in mathematics teaching and learning: evidence from learners’ and teachers’ gestures’, J. Learn. Sci., 2012, 21, (2), pp. 247–286.
-
-
34)
-
52. Graham, T.A.: ‘The role of gesture in children's learning to count’, J. Exp. Child Psychol., 1999, 74, (4), pp. 333–355.
-
-
35)
-
48. Gelman, R., Butterworth, B.: ‘Number and language: how are they related?’, Trends Cogn. Sci., 2005, 9, (1), pp. 6–10.
-
-
36)
-
117. Stoianov, I., Zorzi, M., Becker, S., et al: ‘Associative arithmetic with Boltzmann machines: the role of number representations’. Artificial Neural Networks—ICANN 2002, Madrid, Spain, 2002, p. 82.
-
-
37)
-
136. Weisberg, D.S., Hirsh-Pasek, K., Golinkoff, R.M., et al: ‘Guided play: principles and practices’, Curr. Dir. Psychol. Sci., 2016, 25, (3), pp. 177–182.
-
-
38)
-
12. Goldin-Meadow, S., Levine, S.C., Jacobs, S.: ‘Gesture's role in learning arithmetic’, in Edwards, L.D., Ferrara, F., Moore-Russo, D. (Eds.): New theories of everything: the quest for ultimate explanation, (Information Age Publishing, United Kingdom, 2014), pp. 1–272.
-
-
39)
-
115. LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553), pp. 436–444.
-
-
40)
-
63. Alibali, M.W., DiRusso, A.A.: ‘The function of gesture in learning to count: more than keeping track’, Cogn. Dev., 1999, 14, (1), pp. 37–56.
-
-
41)
-
104. Nieder, A., Freedman, D.J., Miller, E.K.: ‘Representation of the quantity of visual items in the primate prefrontal cortex’, Science, 2002, 297, (5587), pp. 1708–1711.
-
-
42)
-
7. Pfeifer, R., Bongard, J., Grand, S.: ‘How the body shapes the way we think: a new view of intelligence’ (MIT Press, Massachusetts, USA, 2007).
-
-
43)
-
106. Reynvoet, B., Brysbaert, M., Fias, W.: ‘Semantic priming in number naming’, Q. J. Exp. Psychol. A, 2002, 55, (4), pp. 1127–1139.
-
-
44)
-
6. Wilson, M.: ‘Six views of embodied cognition’, Psychon. Bull. Rev., 2002, 9, (4), pp. 625–636.
-
-
45)
-
42. Tanaka, F., Matsuzoe, S.: ‘Children teach a care-receiving robot to promote their learning: field experiments in a classroom for vocabulary learning’, J. Hum.-Robot Interact., 2012, 1, (1), pp. 78–95.
-
-
46)
-
100. Fuson, K.C.: ‘Children's counting and concepts of number’ (Springer, Germany, 1988).
-
-
47)
-
19. Anderson, J.R.: ‘How can the human mind occur in the physical universe?’ (Oxford University Press, United Kingdom, 2007).
-
-
48)
-
21. Asada, M., MacDorman, K.F., Ishiguro, H., et al: ‘Cognitive developmental robotics as a new paradigm for the design of humanoid robots’, Rob. Auton. Syst., 2001, 37, (2), pp. 185–193.
-
-
49)
-
98. Hebb, D.O.: ‘The organization of behavior’ (Wiley, New York, USA, 1949).
-
-
50)
-
116. Zorzi, M., Testolin, A., Stoianov, I.P.: ‘Modeling language and cognition with deep unsupervised learning: a tutorial overview’, Front. Psychol., 2013, 4, p. 515.
-
-
51)
-
32. Mubin, O., Stevens, C.J., Shahid, S., et al: ‘A review of the applicability of robots in education’, Technol. Educ. Learn., 2013, 1, (1), pp. 1–7.
-
-
52)
-
59. Fischer, M.H.: ‘Finger counting habits modulate spatial–numerical associations’, Cortex, 2008, 44, (4), pp. 386–392.
-
-
53)
-
47. Rucinski, M.: ‘Modelling learning to count in humanoid robots’, 2014.
-
-
54)
-
97. Kohonen, T.: ‘Self-organizing maps’ (Springer, Germany, 2001).
-
-
55)
-
66. Moeller, K., Martignon, L., Wessolowski, S., et al: ‘Effects of finger counting on numerical development – the opposing views of neurocognition and mathematics education’, Front. Psychol., 2011, 2, p. 328.
-
-
56)
-
126. Davis, S., Mermelstein, P.: ‘Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences’, IEEE Trans. Acoust., 1980, 28, (4), pp. 357–366.
-
-
57)
-
80. Jay, T., Betenson, J.: ‘Mathematics at your fingertips: testing a finger training intervention to improve quantitative skills’, Front. Educ., 2017, 2, p. 22.
-
-
58)
-
35. Robins, B., Dautenhahn, K., Ferrari, E., et al: ‘Scenarios of robot-assisted play for children with cognitive and physical disabilities’, Interact. Stud., 2012, 13, (2), pp. 189–234.
-
-
59)
-
77. Noël, M.-P.: ‘Finger gnosia: a predictor of numerical abilities in children?’, Child Neuropsychol., 2005, 11, (5), pp. 413–430.
-
-
60)
-
133. Graves, A.: ‘Long short-term memory’, in Graves, A. (Ed.): ‘Supervised sequence labelling with recurrent neural networks’, Studies in computational intelligence (Springer, Berlin, Heidelberg, 2012), pp. 37–45.
-
-
61)
-
128. Di Nuovo, A., De La Cruz, V.M., Cangelosi, A.: ‘A deep learning neural network for number cognition: a bi-cultural study with the iCub’. IEEE Int. Conf. on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) 2015, Providence, RI, USA, 2015, pp. 320–325.
-
-
62)
-
137. Rittle-Johnson, B., Loehr, A.M., Durkin, K.: ‘Promoting self-explanation to improve mathematics learning: a meta-analysis and instructional design principles’, ZDM, 2017, 49, (4), pp. 599–611.
-
-
63)
-
86. Dehaene, S., Changeux, J.-P.: ‘Development of elementary numerical abilities: a neuronal model’, J. Cogn. Neurosci., 1993, 5, pp. 390–407.
-
-
64)
-
36. Robins, B., Dautenhahn, K., Dubowski, J.: ‘Does appearance matter in the interaction of children with autism with a humanoid robot?’, Interact. Stud., 2006, 7, (3), pp. 509–542.
-
-
65)
-
17. Steels, L., Brooks, R. (Eds.): ‘The artificial life route to artificial intelligence’ (Routledge, United Kingdom, 2018).
-
-
66)
-
37. Dautenhahn, K., Werry, I.: ‘Towards interactive robots in autism therapy: background, motivation and challenges’, Pragmat. Cogn., 2004, 12, (1), pp. 1–35.
-
-
67)
-
107. Gevers, W., Verguts, T., Reynvoet, B., et al: ‘Numbers and space: a computational model of the SNARC effect’, Am. Psychol. Assoc., 2006, 32, pp. 32–44.
-
-
68)
-
113. Shrager, J., Siegler, R.S.: ‘SCADS: a model of children's strategy choices and strategy discoveries’, Psychol. Sci., 1998, 9, (5), pp. 405–410.
-
-
69)
-
50. Lafay, A., Thevenot, C., Castel, C., et al: ‘The role of fingers in number processing in young children’, Front. Psychol., 2013, 4, p. 488.
-
-
70)
-
45. Lopez-Caudana, E., Ponce, P., Cervera, L., et al: ‘Robotic platform for teaching maths in junior high school’, Int. J. Interact. Des. Manuf., 2017, ISSUE 4, pp. 1–12.
-
-
71)
-
29. Metta, G., Natale, L., Nori, F., et al: ‘The iCub humanoid robot: an open-systems platform for research in cognitive development’, Neural Netw., 2010, 23, pp. 1125–1134.
-
-
72)
-
122. Rucinski, M., Cangelosi, A., Belpaeme, T.: ‘Robotic model of the contribution of gesture to learning to count’. Proc. IEEE Int. Conf. on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) 2012, San Diego, CA, USA, 2012.
-
-
73)
-
81. Berteletti, I., Booth, J.R.: ‘Perceiving fingers in single-digit arithmetic problems’, Front. Psychol., 2015, 6, p. 226.
-
-
74)
-
109. Fischer, M.H., Castel, A.D., Dodd, M.D., et al: ‘Perceiving numbers causes spatial shifts of attention’, Nat. Neurosci., 2003, 6, p. 555.
-
-
75)
-
130. Hinton, G.E., Salakhutdinov, R.R.: ‘Reducing the dimensionality of data with neural networks’, Science, 2006, 313, (5786), pp. 504–507.
-
-
76)
-
112. Fachantidis, A., Di Nuovo, A., Cangelosi, A., et al: ‘Model-based reinforcement learning for humanoids: a study on forming rewards with the iCub platform’. 2013 IEEE Symp. on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Singapore, Singapore, 2013, pp. 87–93.
-
-
77)
-
120. Ruciński, M., Cangelosi, A., Belpaeme, T.: ‘An embodied developmental robotic model of interactions between numbers and space’. Proc. 33rd Annual Meeting of the Cognitive Science Society, Boston, MA, USA, 2011, pp. 237–242.
-
-
78)
-
14. Young, C.J., Levine, S.C., Mix, K.S.: ‘The connection between spatial and mathematical ability across development’, Front. Psychol., 2018, 9, p. 755.
-
-
79)
-
91. Peterson, S.A., Simon, T.J.: ‘Computational evidence for the subitizing phenomenon as an emergent property of the human cognitive architecture’, Cogn. Sci., 2010, 24, (1), pp. 93–122.
-
-
80)
-
3. Lakoff, G., Nuñez, R.: ‘Where mathematics comes from: how the embodied mind brings mathematics into being’ (Basic Books, New York, USA, 2000).
-
-
81)
-
110. Hansen, S.S., McKenzie, C.R.L., McClelland, J.L.: ‘Two plus three is five: discovering efficient addition strategies without metacognition’. Proc. Annual Meeting of the Cognitive Science Society, Quebec City, Canada, 2014.
-
-
82)
-
127. Bar-Joseph, Z., Gifford, D.K., Jaakkola, T.S.: ‘Fast optimal leaf ordering for hierarchical clustering’, Bioinformatics, 2001, 17, (suppl. 1), pp. S22–S29.
-
-
83)
-
82. Ashcraft, M.H.: ‘Cognitive arithmetic: a review of data and theory’, Cognition, 1992, 44, (1), pp. 75–106.
-
-
84)
-
11. Soylu, F., Lester, F.K.Jr., Newman, S.D.: ‘You can count on your fingers: the role of fingers in early mathematical development’, J. Numer. Cogn., 2018, 4, (1), pp. 107–135.
-
-
85)
-
30. Pandey, A.K., Gelin, R.: ‘A mass-produced sociable humanoid robot: pepper: the first machine of its kind’, IEEE Robot. Autom. Mag., 2018, 25, (3), pp. 40–48.
-
-
86)
-
64. Di Luca, S., Pesenti, M.: ‘Masked priming effect with canonical finger numeral configurations’, Exp. Brain Res., 2008, 185, (1), pp. 27–39.
-
-
87)
-
132. Di Nuovo, A.: ‘Long-short term memory networks for modelling embodied mathematical cognition in robots’. Proc. 2018 Int. Joint Conf. on Neural Networks (IJCNN), Rio de Janeiro, Brasil, 2018, pp. 1–7.
-
-
88)
-
71. Kaufmann, L., Vogel, S.E., Wood, G., et al: ‘A developmental fMRI study of nonsymbolic numerical and spatial processing’, Cortex, 2008, 44, (4), pp. 376–385.
-
-
89)
-
111. Barto, A.G.: ‘Reinforcement learning: an introduction’ (MIT Press, Massachusetts, USA, 1998).
-
-
90)
-
9. Dantzig, T.: ‘Number – the language of science’ (Free Press, New York, USA, 1954).
-
-
91)
-
129. Di Nuovo, A.: ‘An embodied model for handwritten digits recognition in a cognitive robot’. IEEE Symp. on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Honolulu, HI, USA, 2017, pp. 1–6.
-
-
92)
-
84. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: ‘A learning algorithm for Boltzmann machines’, Cogn. Sci., 1985, 9, (1), pp. 147–169.
-
-
93)
-
87. de Hevia, M.D., Castaldi, E., Streri, A., et al: ‘Perceiving numerosity from birth’, Behav. Brain Sci., 2017, 40, p. e169.
-
-
94)
-
46. Zorzi, M., Stoianov, I., Umiltà, C.: ‘Computational modeling of numerical cognition’, in Campbell, J. (Ed.): ‘The handbook of mathematical cognition’ (Psychology Press, New York, USA, 2005), pp. 67–84.
-
-
95)
-
123. De La Cruz, V.M., Di Nuovo, A., Di Nuovo, S., et al: ‘Making fingers and words count in a cognitive robot’, Front. Behav. Neurosci., 2014, 8, p. 13.
-
-
96)
-
83. McCloskey, M., Lindemann, A.M.: ‘MATHNET: preliminary results from a distributed model of arithmetic fact retrieval’, in Campbell, J. (Ed.): ‘The nature and origins of mathematical skills’ (North-Holland, Netherlands, 1992), pp. 365–409.
-
-
97)
-
75. Starkey, P., Cooper, R.G.: ‘Perception of numbers by human infants’, Science, 1980, 210, (4473), pp. 1033–1035.
-
-
98)
-
5. Glenberg, A.M.: ‘Embodiment as a unifying perspective for psychology’, Wiley Interdiscip. Rev. Cogn. Sci., 2010, 1, (4), pp. 586–596.
-
-
99)
-
2. Lave, J.: ‘Cognition in practice: mind, mathematics and culture in everyday life’ (Cambridge University Press, United Kingdom, 1988).
-
-
100)
-
34. Conti, D., Di Nuovo, S., Buono, S., et al: ‘Robots in education and care of children with developmental disabilities: a study on acceptance by experienced and future professionals’, Int. J. Soc. Robot., 2017, 9, pp. 51–62.
-
-
101)
-
94. Rumelhart, D.E., McClelland, J.L.: ‘Parallel distributed processing: explorations in the microstructure of cognition’ (MIT Press, Massachusetts, USA, 1986).
-
-
102)
-
121. Caligiore, D., Borghi, A., Parisi, D., et al: ‘TRoPICALS: a computational embodied neuroscience model of compatibility effects’, Am. Psychol. Assoc., 2010, 117, pp. 1188–1228.
-
-
103)
-
125. Di Nuovo, A., De La Cruz, V.M., Cangelosi, A., et al: ‘The iCub learns numbers: an embodied cognition study’. Int. Joint Conf. on Neural Networks (IJCNN 2014), Beijing, China, 2014, pp. 692–699.
-
-
104)
-
96. Jordan, M.I.: ‘Attractor dynamics and parallelism in a connectionist sequential machine’. Proc. Eighth Annual Conf. of the Cognitive Science Society, Hillsdale, NJ, USA, 1986, pp. 531–546.
-
-
105)
-
54. Gelman, R., Gallistel, C.R.: ‘The child's understanding of number’ (Harvard University Press, Massachusetts, USA, 1986).
-
-
106)
-
114. Bengio, Y.: ‘Learning deep architectures for AI’ (Now Publishers Inc., Massachusetts, USA, 2009).
-
-
107)
-
108. Chen, Q., Verguts, T.: ‘Beyond the mental number line: a neural network model of number–space interactions’, Cogn. Psychol., 2010, 60, (3), pp. 218–240.
-
-
108)
-
57. Tschentscher, N., Hauk, O., Fischer, M.H., et al: ‘You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers’, Neuroimage, 2012, 59, (4), pp. 3139–3148.
-
-
109)
-
13. Barrow, J.D.: ‘New theories of everything: the quest for ultimate explanation’ (Oxford University Press, United Kingdom, 2008).
-
-
110)
-
102. Verguts, T., Fias, W.: ‘Representation of number in animals and humans: a neural model’, J. Cogn. Neurosci., 2004, 16, (9), pp. 1493–1504.
-
-
111)
-
76. Ifrah, G.: ‘The universal history of numbers: from prehistory to the invention of the computer’ (Wiley, New York, NY, 2000).
-
-
112)
-
38. Kennedy, J., Baxter, P., Senft, E., et al: ‘Social robot tutoring for child second language learning’. 2016 11th ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), Christchurch, New Zealand, 2016, pp. 231–238.
-
-
113)
-
22. Cangelosi, A., Schlesinger, M.: ‘Developmental robotics: from babies to robots’ (MIT Press, Massachusetts, USA, 2015).
-
-
114)
-
28. Conti, D., Di Nuovo, S., Cangelosi, A., et al: ‘Lateral specialization in unilateral spatial neglect: a cognitive robotics model’, Cogn. Process., 2016, 17, (3), pp. 321–328.
-
-
115)
-
39. Jacq, A., Garcia, F., Dillenbourg, P., et al: ‘Building successful long child-robot interactions in a learning context’. 2016 11th ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), Christchurch, New Zealand, 2016, pp. 239–246.
-
-
116)
-
16. Nieder, A.: ‘The neuronal code for number’, Nat. Rev. Neurosci., 2016, 17, p. 366.
-
-
117)
-
79. Reeve, R.: ‘Five- to 7-year-olds’ finger gnosia and calculation abilities’, Front. Psychol., 2011, 2, p. 359.
-
-
118)
-
23. Asada, M., Hosoda, K., Kuniyoshi, Y., et al: ‘Cognitive developmental robotics: a survey’, IEEE Trans. Auton. Ment. Dev., 2009, 1, (1), pp. 12–34.
-
-
119)
-
55. Jordan, N.C., Kaplan, D., Ramineni, C., et al: ‘Development of number combination skill in the early school years: when do fingers help?’, Dev. Sci., 2008, 11, (5), pp. 662–668.
-
-
120)
-
124. Di Nuovo, A., De La Cruz, V.M., Cangelosi, A.: ‘Grounding fingers, words and numbers in a cognitive developmental robot’. IEEE Symp. on Cognitive Algorithms, Mind, and Brain (CCMB), Orlando, FL, USA, 2014, pp. 9–15.
-
-
121)
-
74. Newman, S.D.: ‘Does finger sense predict addition performance?’, Cogn. Process., 2016, 17, (2), pp. 139–146.
-
-
122)
-
65. Domahs, F., Kaufmann, L., Fischer, M.H.: ‘Handy numbers: finger counting and numerical cognition’ (Frontiers E-books, Switzerland, 2014).
-
-
123)
-
43. Hsu, S.-H., Chou, C.-Y., Chen, F.-C., et al: ‘An investigation of the differences between robot and virtual learning companions’ influences on students’ engagement’. The First IEEE Int. Workshop on Digital Game and Intelligent Toy Enhanced Learning, 2007. DIGITEL'07, Jhongli, Taiwan, 2007, pp. 41–48.
-
-
124)
-
67. Domahs, F., Krinzinger, H., Willmes, K.: ‘Mind the gap between both hands: evidence for internal finger-based number representations in children's mental calculation’, Cortex, 2008, 44, (4), pp. 359–367.
-
-
125)
-
68. Klein, E., Moeller, K., Willmes, K., et al: ‘The influence of implicit hand-based representations on mental arithmetic’, Front. Psychol., 2011, 2, p. 197.
-
-
126)
-
31. Sakagami, Y., Watanabe, R., Aoyama, C., et al: ‘The intelligent ASIMO: system overview and integration’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, vol. 3, pp. 2478–2483.
-
-
127)
-
95. Ahmad, K., Casey, M., Bale, T.: ‘Connectionist simulation of quantification skills’, Connect. Sci., 2002, 14, (3), pp. 165–201.
-
-
128)
-
25. Di Nuovo, A., Marocco, D., Di Nuovo, S., et al: ‘Autonomous learning in humanoid robotics through mental imagery’, Neural Netw., 2013, 41, pp. 147–155.
-
-
129)
-
1. Aunio, P., Räsänen, P.: ‘Core numerical skills for learning mathematics in children aged five to eight years – a working model for educators’, Eur. Early Child. Educ. Res. J., 2016, 24, (5), pp. 684–704.
-
-
130)
-
103. Verguts, T., Fias, W., Stevens, M.: ‘A model of exact small-number representation’, Psychon. Bull. Rev., 2005, 12, (1), pp. 66–80.
-
-
131)
-
10. Fischer, M., Kaufmann, L., Domahs, F.: ‘Finger counting and numerical cognition’, Front. Psychol., 2012, 3, p. 108.
-
-
132)
-
56. Di Luca, S., Pesenti, M.: ‘Finger numeral representations: more than just another symbolic code’, Front. Psychol., 2011, 2, p. 272.
-
-
133)
-
26. Di Nuovo, A., Marocco, D., Di Nuovo, S., et al: ‘A neural network model for spatial mental imagery investigation: a study with the humanoid robot platform iCub’. 2011 Int. Joint Conf. on Neural Networks (IJCNN), San Jose, CA, USA, 2011, pp. 2199–2204.
-
-
134)
-
62. Goldin-Meadow, S., Alibali, M.W.: ‘Gesture's role in learning and development’, in ‘The Oxford handbook of developmental psychology (vol. 1): body and mind’ (Oxford University Press, 2013), pp. 953–973.
-
-
135)
-
27. Di Nuovo, A., Marocco, D., Di Nuovo, S., et al: ‘Embodied mental imagery in cognitive robots’, in Magnani, L., Bertolotti, T. (Eds.): ‘Springer handbook of model-based science’ (Springer International Publishing, Switzerland, 2017), pp. 619–637.
-
-
136)
-
44. Chen, G.-D., Wang, C.-Y.: ‘A survey on storytelling with robots’. Int. Conf. on Technologies for E-Learning and Digital Entertainment, Bournemouth, UK, 2011, pp. 450–456.
-
-
137)
-
134. Dehaene, S., Piazza, M., Pinel, P., et al: ‘Three parietal circuits for number processing’, Cogn. Neuropsychol., 2003, 20, (3–6), pp. 487–506.
-
-
138)
-
92. Dehaene, S.: ‘Varieties of numerical abilities’, Cognition, 1992, 44, pp. 1–42.
-
-
139)
-
119. Stoianov, I., Zorzi, M.: ‘Emergence of a ‘visual number sense’ in hierarchical generative models’, Nat. Neurosci., 2012, 15, (2), pp. 194–196.
-
-
1)

Related content
