Physical Biometrics for Hardware Security of DSP and Machine Learning Coprocessors

Physical Biometrics for Hardware Security of DSP and Machine Learning Coprocessors presents state-of-the art explanations for detective control-based security and protection of digital signal processing (DSP) and machine learning coprocessors against hardware threats. Such threats include intellectual property (IP) abuse and misuse, for example, fraudulent claims of IP ownership and IP piracy. DSP coprocessors such as finite impulse response filters, image processing filters, discrete Fourier transform, and JPEG compression hardware are extensively utilized in several real-life applications. Further, machine learning coprocessors such as convolutional neural network (CNN) hardware IP cores play a vital role in several applications such as face recognition, medical imaging, autonomous driving, and biometric authentication, amongst others.
Written by an expert in the field, this book reviews recent advances in hardware security and IP protection of digital signal processing (DSP) and machine learning coprocessors using physical biometrics and DNA. It presents solutions for secured coprocessors for DSP, image processing applications and CNN, and where relevant chapters explores the advantages, disadvantages and security-cost trade-offs between different approaches and techniques to assist in the practical application of these methods.
The interdisciplinary themes and topics covered are expected to be of interest to researchers in several areas of specialisation, encompassing the overlapping fields of hardware design security, VLSI design (high level synthesis, register transfer level, gate level synthesis), IP core, optimization using evolutionary computing, system-on-chip design, and biometrics. CAD/design engineers, system architects and students will also find this book to be a useful resource.
- Book DOI: 10.1049/PBCS080E
- Chapter DOI: 10.1049/PBCS080E
- ISBN: 9781839538216
- e-ISBN: 9781839538223
- Page count: 356
- Format: PDF
-
Front Matter
- + Show details - Hide details
-
p.
(1)
-
1 Introduction: secured co-processors for machine learning and DSP applications using biometrics
- + Show details - Hide details
-
p.
1
–23
(23)
The chapter gives an introduction on security requirements of co-processors for machine learning (ML) and digital signal processing (DSP) applications and the role of biometrics in securing them. This introduction of the book tries to build interest in readers about the various DSP and ML co-processors; behavioral synthesis design process for generating secured DSP and ML co-processors and importance of biometric security for hardware authentication.
The chapter is organized as follows: Section 1.1 introduces about the co-processors, different hardware threats, and conventional security solutions; Section 1.2 highlights the significance of behavioral synthesis in designing and securing co-processors; Section 1.3 introduces about the co-processors for ML applications, why ML co-processors need to be secured, and how behavioral synthesis plays a crucial role in securing ML co-processors; Section 1.4 introduces about the behavioral synthesis perspective in designing and securing DSP co-processors; Section 1.5 introduces about the biometric security based on fingerprint, face, and palmprint for ML and DSP co-processors.
-
2 Integrated defense using structural obfuscation and encrypted DNA-based biometric for hardware security
- + Show details - Hide details
-
p.
25
–56
(32)
This chapter describes a robust hardware security methodology capable of providing integrated defense using multi-layered structural obfuscation and encrypted deoxyribonucleic acid (DNA)-based biometric security (Sengupta and Chaurasia, 2022). The presented security methodology in this chapter enables the defense against the threats of register transfer (RT) level design modification by performing structural obfuscation. Additionally, it also provides detective defense control against intellectual property (IP) piracy using integrated encrypted DNA biometric security.
The organization of the chapter is as follows: Section 2.1 provides the introduction of the chapter; Section 2.2 highlights the background details of deoxyribonucleic acid (DNA)/genome sequencing; Section 2.3 presents the discussion and analysis of some of the major state of the art approaches; Section 2.4 explains the encryption process to encrypt DNA-based biometric signature as well as presents the integrated defense using structural obfuscation and encrypted DNA for hardware security; Section 2.5 shows the detection and validation of embedded encrypted DNA signature corresponding to the target register transfer level hardware design; Section 2.6 discusses the security properties and design cost of the discussed approaches; and Section 2.7 concludes the chapter.
-
3 Facial signature-based biometrics for hardware security and IP core protection
- + Show details - Hide details
-
p.
57
–92
(36)
The chapter describes a robust physiological biometrics-based methodology using facial signature biometric for hardware security and intellectual property (IP) core protection (Sengupta and Rathor, 2021). In this methodology, first, the facial biometric signature of IP vendor is extracted and subsequently transformed into encoded constraints for hardware security using multi-level encoding specified by IP vendor. Next, these generated secret constraints for hardware security are inserted inside the design at the register allocation stage of high-level synthesis (HLS) process. These embedded facial security constraints act as digital evidence to enable security of IP core design against several security threats. The hardware security methodology based on facial biometric enables the robust and seamless detective control against the threat of IP piracy. Additionally, it also protects the ownership rights of authentic IP vendor, in case if a rogue system on chip (SoC) integrator or an adversary at foundry, falsely claims the IP ownership.
The rest of the chapter has been organized as follows: Section 3.1 provides the introduction of the chapter; Section 3.2 highlights the importance of HLS for designing digital signal processing (DSP) coprocessors; Section 3.3 presents the discussion and analysis of alternative techniques used for Intellectual property protection (IPP) of DSP coprocessors; Section 3.4 explains the features of facial biometric for IPP and its advantage over fingerprint biometrics; Section 3.5 shows the summary of facial biometric methodology for IPP; Section 3.6 explains the details of facial biometric methodology for IPP; Section 3.7 presents a case study of designing safeguarding N-point discrete Fourier transform (DFT) design using facial biometrics; Section 3.8 discusses security properties of facial biometric methodology for hardware security; Section 3.9 provides analysis and discussion and Section 3.10 concludes the chapter.
-
4 Secured convolutional layer hardware co-processor in convolutional neural network (CNN) using facial biometric
- + Show details - Hide details
-
p.
93
–146
(54)
The chapter describes a methodology for designing a secured custom reusable hardware co-processor intellectual property (IP) core for convolutional neural network (CNN)-based convolutional layer [1]. In this methodology, first the convolutional layer hardware IP core is designed using high-level synthesis (HLS) process. HLS transforms the behavioral description/transfer function corresponding to the convolution operation of CNN into scheduled data flow graph (DFG) design to realize the behavior of convolutional layer. Since the reusable IP cores may be vulnerable to the hardware threat of IP piracy, therefore, facial biometric of IP vendor is integrated within the design. To do so, first, the facial signature corresponding to facial biometric image of an IP vendor is generated. Subsequently, facial biometric signature in the form of encoded hardware security constraints (digital evidence) is integrated into the IP design during the register allocation module of HLS. HLS-based design methodology results in a custom reusable convolutional layer hardware co-processor IP core with lesser implementation complexity and robust security. The embedded facial biometric-driven digital evidence enables the robust detective control against IP piracy. Therefore, it ensures the integration of genuine reusable hardware co-processor IP cores in the system-on-chip (SoCs) of consumer electronics (CE) systems, thereby also ensuring the integrity and safety of end consumers.
The organization of the chapter is as follows: Section 4.1 summarizes the introduction of the chapter; Section 4.2 discusses the motivation for designing CNN-based custom convolutional layer reusable IP core; Section 4.3 presents the benefits of the methodology to the end consumer; Section 4.4 presents the discussion on similar existing works; Section 4.5 provides background on CNN framework; Section 4.6 presents an overview of the approach; Section 4.7 provides the details of the approach; Section 4.8 provides analysis and discussion; and Section 4.9 concludes the chapter.
-
5 Handling symmetrical IP core protection and IP protection (IPP) of Trojan-secured designs in HLS using physical biometrics
- + Show details - Hide details
-
p.
147
–198
(52)
The chapter describes the applications of biometric-based hardware security methodologies to provide symmetric protection of ownership rights for intellectual property (IP) buyer and seller. Additionally, it also presents the application of facial biometric-based hardware security for protecting Trojan-secured DSP designs against IP piracy (Chaurasia and Sengupta, 2022a, 2022b). To provide symmetric security for IP buyer and seller, first, the fingerprint biometric of IP buyer in the form of secret hardware security constraints is embedded into the digital signal processing (DSP) design during high-level synthesis (HLS). This embedded fingerprint signature IP buyer safeguards his/her rights against an adversary or an untrustworthy IP seller. Subsequently, post obtaining the IP buyer fingerprint embedded design, the facial biometric of IP seller is inserted into the design. Thus, the embedded security constraints (digital evidence) corresponding to fingerprint biometric and facial biometric signature of IP buyer and seller, respectively, enables the symmetric protection of their ownership rights. Additionally, in case of piracy, the embedded facial biometric signature also enables the robust and seamless detective control against pirated versions. Further, for protecting the Trojan-secured designs against IP piracy, first the Trojan-secured scheduled design is generated. Subsequently, the facial security constraints are inserted into the Trojan-secured design using HLS. These embedded facial security constraints enable the piracy detection control for Trojan-secured DSP designs as well. Thus, isolating pirated versions before integrating into system on chip (SoC) systems.
The organization of the chapter is as follows: Section 5.1 discusses about the introduction of the chapter; Section 5.2 presents the discussion on contemporary approaches for symmetrical IP core protection; Section 5.3 explains the process of HLS-based symmetrical IP core protection using IP seller facial biometric and IP buyer fingerprint biometric; Section 5.4 shows the protection of IP seller right's against the false claim of IP ownership; Section 5.5 shows the protection of IP buyer right's using fingerprint biometric signature; Section 5.6 explains the piracy detection process; Section 5.7 presents the process of employing facial biometric for protecting Trojan-secured IP cores against piracy; Section 5.8 discusses and analyses the security and design cost of symmetrical IP core protection technique and for, protecting Trojan-secured designs against piracy; Section 5.9 concludes the chapter.
-
6 Palmprint biometrics vs. fingerprint biometrics vs. digital signature using encrypted hash: qualitative and quantitative comparison for security of DSP coprocessors
- + Show details - Hide details
-
p.
199
–225
(27)
Security of data and computation-intensive application-specific integrated circuits (ASICs) or reusable intellectual property cores is essential because of their wide applicability in the modern digital ecosystem. Integration of these ASICs while designing a complex computation system helps in the parallel and smooth execution of data and computation-intensive functions (such as image pixel computations and digital data filtering). This chapter presents a discussion and qualitative comparative analysis between three different recent hardware security methodologies, i.e., fingerprint-based hardware security methodology, palmprint-based hardware security methodology, and digital signature using encrypted hash-based digital signature methodologies, respectively. Moreover, this chapter also describes the design flow of the security methodologies in detail. Further, this chapter analyzes the security strength of the security methodologies using security metrics such as tamper tolerance and probability of coincidence.
-
7 Secured design flow using palmprint biometrics, steganography, and PSO for DSP coprocessors
- + Show details - Hide details
-
p.
227
–258
(32)
Reusable intellectual property (IP) cores are widely used in all modern digital integrated circuits (ICs) in the form of application-specific processors or hardware accelerators. Reusable IP cores integrated in system-on-chip (SoC) platforms of integrated circuits and systems provide a powerful blend of yielding superior design productivity with reduced design cycle time. However, leveraging advantages of IP core require low-cost security against threats such as piracy and fraudulent claim of ownership. This chapter discusses the following aspects: (a) security-aware end-to-end high-level synthesis (HLS)-based design methodology using low-cost steganography technique for protecting IP cores used in digital ICs; (b) security-aware end-to-end HLS-based design methodology using low-cost biometric signature for protecting IP cores used in digital ICs; (c) secured RTL designs of reusable IP core embedding secret steganography mark and biometric signature respectively offering low overhead, strong robustness, and greater security in terms of lower probability of coincidence and higher tamper tolerance. Further, the chapter also discusses the achieved robustness of > 2× (i.e., stronger digital evidence as evident from the lower probability of coincidence) and lower design cost (~6.17%) than state-of-the-art approaches.
-
8 Methodology for exploration of security-design cost trade-off for signature-based security algorithms
- + Show details - Hide details
-
p.
259
–297
(39)
The chapter describes a methodology for the exploration of security-design cost trade-off for signature-based security algorithms for digital signal processing (DSP) hardware design architecture (Chaurasia and Sengupta, 2022d). In this methodology, security-design cost analysis has been discussed for three different hardware security algorithms based on facial biometrics, encrypted-hash, and hardware watermarking. Further, to generate an optimal hardware design architectural solution, particle swarm optimization (PSO)-based design space exploration (DSE) has been performed. Thus, signature-based security algorithms are integrated with the PSO-DSE framework for exploring the hardware architecture trade-offs of security-design cost. Therefore, this methodology enables the intellectual property (IP) core designer and/or consumer electronics (CE) integrator to decide the choice of their DSP hardware IP architecture such that it meets the end objective of robust security (against fake/pirated IPs) and lower design cost.
The organization of the chapter is as follows: Section 8.1 discusses about the introduction of the chapter; Section 8.2 discusses the motivation for performing security-design cost trade-off; Section 8.3 presents the discussion and analysis of similar existing work; Section 8.4 explains the details of the methodology for exploration of security-design cost trade-off for secure optimal hardware design architecture; Section 8.5 provides analysis and discussion and Section 8.6 concludes the chapter.
-
9 Taxonomy of hardware security methodologies: IP core protection and obfuscation
- + Show details - Hide details
-
p.
299
–323
(25)
In the modern electronic era, the increased usability and acceptability of reusable intellectual property (IP) cores induce the necessity to secure them from various hardware security threats and attacks. This chapter presents a taxonomy of hardware security methodologies for IP cores and a detailed design flow of hardware integrated circuits (ICs) along with vulnerability points where potential attacks/threats are possible. Trustworthy and untrustworthy regimes in the design flow have also been highlighted in the discussion. Further, a discussion of detective and preventive control-based hardware security approaches used for hardware IP cores have also been presented, including an analysis of prominent structural obfuscation, logic locking (logic encryption), and IP core protection (IPP) techniques. Each approach has been lucidly explained in terms of its threat model, algorithm, and security analysis. Finally, a security comparison of hardware IP obfuscation approaches in terms of strength of obfuscation security metric as well as security comparison of IPP approaches in terms of probability of coincidence security metric have also been introduced.
-
Back Matter
- + Show details - Hide details
-
p.
(1)
Related content
