Your browser does not support JavaScript!

Space Robotics and Autonomous Systems: Technologies, advances and applications

Buy e-book PDF
(plus tax if applicable)
Buy print edition
image of Space Robotics and Autonomous Systems: Technologies, advances and applications
Editor: Yang Gao 1
View affiliations
Publication Year: 2021

Space robotics and autonomous systems (Space RAS) play a critical role in the current and future development of mission-defined machines that can survive in space while performing exploration, assembly, construction, maintenance and servicing tasks. They represent a multi-disciplinary emerging field at the intersection of space engineering, terrestrial robotics, computer science and materials. The field is essential to humankind's ability to explore or operate in space; providing greater access beyond human spaceflight limitations in the harsh environment of space, and offering greater operational handling that extends astronauts' capabilities. Space RAS covers all types of robotics for the exploration of planet surfaces as well as robotics used in orbit around the Earth and the sensors needed by the platform for navigation or control. Written by a team of International experts on space RAS, this book covers advanced research, technologies and applications including: sensing and perception to provide situational awareness for space robotic agents, explorers and assistants; mobility to reach and operate at sites of scientific interest on extra-terrestrial surfaces or free space environments using locomotion; manipulations to make intentional changes in the environment or objects using locomotion such as placing, assembling, digging, trenching, drilling, sampling, grappling and berthing; high-level autonomy for system and sub-systems to provide robust and safe autonomous navigation, rendezvous and docking capabilities and to enable extended-duration operations without human interventions to improve overall performance of human and robotic missions; human-robot interaction and multi-modal interaction; system engineering to provide a framework for understanding and coordinating the complex interactions of robots and achieving the desired system requirements; verification and validation of complex adaptive systems; modelling and simulation; and safety and trust.

Inspec keywords: human-robot interaction; manipulator dynamics; dexterous manipulators; mobile robots; security of data; aerospace robotics

Other keywords: robot vision; muscle; mobile robots; security of data; human-robot interaction; aerospace robotics; flexible manipulators; manipulator dynamics; dexterous manipulators; space vehicles

Subjects: Robot and manipulator mechanics; Engineering mechanics; Spatial variables control; Mobile robots; General topics in manufacturing and production engineering; Manipulators; Aerospace control; General and management topics; Human-robot interaction; Data security

Related content

This is a required field
Please enter a valid email address