Index

$\Sigma \Delta, 489,490,491,594,685,695$, 696, 702, 737
1 dB compression point, 859,931
1-port non-linear capacitance, 934
1/f noise, 284, 713, 715, 717
2D capacitance, 948
2D transconductance, 948
3rd order distortion, 863
3rd order intercept, 861,862
4-wire measurement, 963
80/20 rule, $85,91,100$
A/D conversion, 828, 965
accumulator, 522
accuracy, 961
activity, $87,97,98,122,128,163$, 535, 552
adaptability, 16, 961
adder,
carry-lookahead, 524
ripple carry, 540
adiabatic CMOS, 86
admittance, 408
AGC, 779, 828, 915, 962
algorithm, 562
ALU, 541, 561, 566
AM-PM conversion, 932
analog matched delay sampling, 592
analog sampled-data (ASD), 689, 691
angular position sensor, 1007, 1008, 1011
annealing, 143-146
APLAC input language, 336, 363
APLAC, 20, 21, 22, 40
architectural voltage scaling, 527, 531
ARM microprocessor, 560, 757, 758
asynchronous converters, 966
asynchronous counter, 562
asynchronous, 23, 597
ATM, 525, 526
autocalibration, 959
automated test equipment, 478, 479
backward Euler transformation, 721
bandwidth roll-off, 665, 680
base resistance, $309,310,325$
BER, 821, 828
BESOI, 140, 974
BiCMOS mirror mismatch, 629,630 , 631
bilinear transformation, 721,735
binary decision machine, 560, 564
biomedical products, 454
bipolar ECL, 525
biquadratic transfer function, 735
BJT doublet analysis, 901
BJT doublet noise, 905
BJT grounded-base stage, 873
noise performance, 874,876
non-linearity, 876,883
harmonic intercepts, 881
BJT mirror mismatch, 628,629
BJT pair
noise, 890,893
dynamic range, 892,894
noise, degenerated, 898
BJT scattering parameters, 317,321
BJT test structure, 29, 626
bonding, 151,152
boundary scan, 477
Box-Behnken experiment, 642, 646, 648
branch delay, 568, 569
branch-based logic, 543, 547, 551, 552
bridges, 991
broadbanding, 657, 676, 678
BSIM, 85, 103, 105, 617
built-in self test, 477, 478, 483, 485, 489
built-in current sensors, 724
burn mark, 439, 440
bus driver, 551
cache memory, 572, 573, 574
calorimeter, 987
cantilevers, 991
capacitance reduction, 542
capacitive coupling, 376,378
capacitive sensors, 977
capacitor matching, 689
carrier sense multiple access
(CSMA), 763
cascoded $\mathrm{S}^{2} \mathrm{I}$ cell, 698
CDMA, 10, 44, 749, 820
channel stop implant, 406
charge injection, 714, 715, 737
charge pump, 602
charge sharing, 268,270
charge storage, 217, 228, 271
chip-on-board, 373, 401, 456, 596
chip-to-chip communication, 523
circuit envelope, 17, 19
CISC instructions, 571
class AB SI cell, 715, 716, 717
class $A B$ S $^{\text {N }}$ cell, 733
class $\mathrm{AB}, 784$
clock management, 575
clock resolution, 590, 591, 596
clock tree, 575, 576
clocks per instruction, CPI, 538, 561, 570, 571
clocks per operation, CPO, 538
closed-loop analysis, CFOA, 667
CMOS calculator, 30
coarse quantisation, 1014
coherence, 480
collector capacitance, 308
collision detection (CD), 763
complementary BJT, $6,657,658$, 686
complex (I/Q) correlators, 832, 833
complex gate decomposition, 549, 550, 551
computer integrated manufacturing, 59
computer-aided quality and reliability
simulation, 432, 449, 450, 451
concurrent self-test, 722
contact defects, 496
controlled output current, 653, 655
convergence, APLAC, 343, 345
convergence, Parker/Skellern model, 233
conversion efficiency, 784
convolution, $348,356,357,363$
correlated-double sampling, 713
crack defects, 497, 498
current conveyor, 715
current crowding, 439, 440
current feedback op-amp (CFOA), 657, 662, 663, 666
current-mode, 657, 659, 660
data hazard, 568
data interpolation, 1014
data parallelisation, 597, 598
data recovery, 604,605
data reduction, 613
DC analysis, 213, 342, 506
DC offset, 634, 794
DCVSL logic, 554
de-skew latch, 585, 586
DECT, 790, 791
deep submicron, 88
delay vernier structures, 590
delay, $96,519,523,539,548,552$, 575, 590
delay-locked loop (DLL), 595, 596, 601
Deming, 2
demultiplex, 593, 597, 605
design centring, 639
design-oriented characterisation, 29
designable parameters, 436,448
device-circuit interaction, 935,945
diagnosibility, 475, 477
difference frequency, 866
differential mode radiation, 385
diffusion, 515, 544
digital RGB, 755
digital telephony standards, 787, 788
digitally controlled power amplifier, 804
diode-ring mixer, 845,846
direct-conversion, 11, 779, 790, 792, 794, 802
discrete cosine transform, 126
dislocation density, 146, 147
display, 754, 756
distortion mechanisms, 929
distortion nulling mechanisms, 952
distortion, 685, 706, 707, 717, 727
distortion, complex,
common-gate amplifier, 940
cascode amplifier, 941
common source amplifier, 942,
951
matching network, 943
wideband transmission line, 944
operational amplifier, 944
DMILL, 198, 199
domino principle, 520, 554
doping, $110,111,115,117,143,216$, 262, 302, 303, 406, 528
doubly-balanced active mixer, 885
DPL logic, 553
DQPSK, 10, 11, 791, 820, 827
drain open, 723, 725
drift failure, 453, 461
DSP-based testing, 476, 478
dummy switches, 715,736
dynamic logic, $74,108,120,528$, 531, 553
dynamic range, $684,692,708,709$, 712, 714, 962
dynamic voltage divider, 964
early failure, 445
Ebers-Moll BJT model, 303, 304
ECAD, 3
ECL gate, 516
effective voltage, 528
EKV, 40
electrical equivalent, thermal
parameters, 990
electromagnetic simulation, 362,365
electronic commerce, 747
electrothermal interaction, 360,361
eletro-optical PSD transducers, 1001, 1002
emitter degeneration, 895
empirical modelling, 637
emulation, 480
energy per transition, NOR gate, 550
energy, $98,99,106,107,110,536$, 540
energy-delay product, $98,519,538$
energy-time product, see energydelay
energy/operation, 537
engineering education, $2,24,46,54$
error detection algorithm, 724
ESD, 4, 383, 451, 498
Euclidean distance, 467
experiment design, 2, 635
exponential mixer, 856
extrinsic voids, 151
factor analysis (FA), 613
failure mechanism, 437, 438, 439, $441,443,446,447,448,451,458$
failure modes, 492
failure rate, 435
fanin, $106,118,514,517$
fanout, $93,514,517$
fault coverage, 725, 726
fault detecttion rate, 726
fault extraction, 505, 506
fault location, 476
fault models, 492, 493
fault simulation, 501, 502, 505
FFT, 19, 126, 127, 131, 353, 355, 480
field penetration depth, 390, 391
FIFO, 586, 753
finite state machine, 123, 124, 465, 541, 560, 564
FIR filters, 555, 704
flash converter, 593, 594
flexible statistical MOS model
(FSMOS), 615, 617, 620
flip-flop, 520, 521, 541, 542, 551, 559, 552, 557, 558, 575, 576, 587
floating impedance, 721
flow sensors, 995
forward Euler transformation, 699
FPU, 577
frequency dispersion, 227
frequency hopped, 800
frequency synthesiser, 803
frequency warping, 735
frequency-dependent components, 347, 356
full-motion video, 755, 817, 821
GaAs current mirror, 728
GaAs integrator, 728, 729
GaAs mismatch, 728, 738
GaAs SI techniques, 727
gate-drain short, 723,725
gate-source short, 723, 725
geometrical yield body, 615, 616, 617
Gilbert cell, 777, Chapter 23
glitches, 540, 542, 753
g_{m}, BJT \times MOS, 515,516
GSM, 11, 788, 789, 792, 794
guard-ring, 196, 198, 381, 382, 423
Gummel plot, 305, 307, 315, 316
Gummel-Poon BJT model, 303, 304
gyrator, 338, 339, 780
Hamming distance, 468, 541
handshake, 759
hard (catastrophic) faults, 492, 493, 503, 723
Hardware scheduler, 565, 566
harmonic analysis, 352
harmonic balance, $18,20,354,355$, 933
harmonic distortion, 930
HBT characterisation, 329
HBT thermal effects, 326
HBT, 7, 8, 40, 325, 326, 328
HEMT biquad output, 737
HEMT, 7, 8, 75, 734, 735
heterojunction, 303, 304
high-energy physics, 188, 195
high-gain CFOA, 678, 683
high-level simulation, 700, 736
high-resolution sampler, 592
high-speed A/D sampler, 592, 593
high-speed BiCMOS ASD sig. proc., 702
high-speed differential comparator, 830
high-speed topologies, 676
human factors, 456
humidity sensors, 998
hybrid IC, 484, 485
I/O logic, 548
$\mathrm{I}^{2} \mathrm{C}$ bus protocol, $969,971,975$
IF sampling, 12, 13, 850
IIP3, 865, 931
image reject mixer, 12
image rejection, 11, 769, 772
impedance control, 870
impedance synthesis, 721
inductive coupling, 375
inductive fault analysis, 494
inductor, see on-chip inductor
infopad baseband digital circuitry, 831
infopad broadband receiver
architecture, 830
infopad I/O terminal, 752
infopad project, 745, 751
infrared radiation sensors, 997
injection (low/high), 306, 307, 320, 376
instruction, 562, 563, 564, 568, 569, 573
integrated temperature sensor, analog, 981
integrated temperature sensor,
microcontroller interfacing, 983
intelligent sensor systems, 959
inter-die parameter variations, 619 , 621, 634
interconnect RLC model, 374, 377, 378
interface bottleneck, 596
interleaved memory, 555, 556, 574
intermittent failure, 453
intermodulation distortion, 930
intermodulation, 858
intra-die parameter variations, 620 , 634
inversion coefficient, 257, 258
Ion/Ioff, 71, 86, 90, 99, 102, 104, $105,114,119,120,163$
ionising energy, $189,190,202,204-$ 206
junction capacitance, $110,153,161$, 166
Karnaugh map, 543
Kelvin contact, 396
Kirchhoff's current law, 336
large-signal analysis, 214
latch, 108, 121, 520, 521, 544, 552, 575, 590, 597, 598
latch-up, 122, 152, 193, 196, 198, 379, 395, 403, 405, 423
latched diff. pass transistor logic, 120
latency, 750,762
layout regularity, 551
LDD, 70, 93, 94, 117, 192, 528
leakage current, $87,107,124,128$, 193, 194, 196, 256, 326, 528, 529, 553, 720
limiter, 868,869
local layout realistic fault mapping, 494
local oscillators, quadrature, 795
logic depth, $87,102,105,107,518$
logic pipeline, 520
logic synthesis, 542
lossless integrator, 699
low IF, 774, 775
low-current SI techniques, 714
low-power cell library, 542, 544, 546, 547, 553
low-power design methodology, 538
low-power microprocessors, 560 , 562
low-signal analysis, 214
low-voltage logic families, 553
macro model, 668
manufacturability, 611
manufacture, $2,26,56$
manufacturing, 453, 455, 457, 460, 469, 492, 609
matched delay generator, 587,589 , 599
matched delay sampler, 585, 597
matched delay technique, 583
matching defects, 492
measurement system array, 985
media access control, 759
membranes, 991, 992
memory, 129, 130
MESFET $3^{\text {rd }}$ order intermodulation, 221
MESFET characterisation, 234, 237241
MESFET saturation, 223
MESFET subthreshold, 225

MESFET, 7, 8, 211
metastability, 597
micro-calorimeters, 999
microcontroller, 960
microprocessor, performance, 563
microprogramming, 563
microstrip/stripline models, 362
microwave silicon CMOS, 824
microwave SOI MOSFETs, 174, 175
Miller effect, $110,166,513$
minimal column decoding, 753
mismatch variance BJT model, 622
mismatch variations, $119,618,651$, 706, 715
mixer analysis, 355,363
mixer core optimisation, 915
mixer metrics, 858
mixer noise figure penalty, 925,926
mixer output frequency spectrum, 840, 842, 846, 851, 855
mixer signal statistics, 866
mixer, 44, 837, 838
MMICs, 773, 778, 782, 785, 798, 805
model requirements, MOST, 249
moderate inversion, 257
modes of operation, 155, 254, 302
modified nodal approach, 338
modulation index, 709
modulator, 838
monitoring, 453, 455, 461
Monte Carlo, 614, 630, 640
MOS test structure, 29, 625
MOSFET channel length modulation, 267
MOSFET characterisation, 285-293
MOSFET mixer, 784, 847, 848, 852
MOSFET mobility, 261, 528, 530, 552
MOSFET transconductances, 259
MOSFET velocity saturation, 266 , 530
MOSFET, DIBL, 269

MOSFET, flicker noise, 284
MOSFET, intrinsic capacitances, 273-275, 276
MOSFET, non-quasi-static model, 278
MOSFET, quasi-static model, 271
MOSFET, thermal noise, 281, 282, 283
MOST specific current, 287, 288
MTTF, 456, 458, 459, 461, 462, 463
multi tanh doublet, 901
multi tanh principle, 900
multi tanh quadlet, quinlet, 910
multi tanh triplet, 908, 909
multi-chip-modules (MCM), 5, 107, $121,122,596,597,690,826$
multimedia access, 748
multipath fading, 24,820
multiple/complex faults, 501
multiplexer, 490, 491, 526, 559, 583, 597
multiplier, 838
multiplying mixer, 840,841
multitasking, 564, 565
multitone excitation, 352
Murphy's law, 26
N-issue, 571, 572
NAND gate, 514, 543
negative frequency, 842
Newton-Raphson, 342
no-short-circuit buffer, 548
nodal conductance matrix, 336
noise coupling, 123, 374, 379, 381, 382, 387, 389, 401, 595, 596
noise factor, 870
noise figure, 870,875
noise margin, 74, 75, 373, 601
noise prevention, 413
noise reduction, 413, 414
noise temperature, 870
non-ionising energy, 191, 203
non-linear dynamic sources, 354
non-linear noise, 20, 363
non-linear static sources, 353
NOR gate, 550
norm reduction, 344,345
numerically controlled oscillator, 12 , 523
object orientation, $334,335,345$
on-chip inductors, $16,772,801$
on-chip voltage multiplication, 125 , 578, 691
operating environment, 459, 460, 469
optical receivers, 680
optical transimpedance amplifier, 703
optimisation, $32,365,431,448,449$, $450,451,610,639,643,644,647$, 915
optoelectronics, 6,7
output conductance, 734, 735
oversampling, 355, 489, 490, 604, 695
oxide defects, 498, 499
oxide thickness, $94,117,149,153$, $164,458,528$
package inductance, 397, 826
package model, 398, 399, 400, 401, 402, 426
package resonance, 377
packaging techniques, $455,456,527$
paging receivers, 778, 780
parallel microprocessors, 570
parallel synchronous counter, 557
parallelisation, 554, 597
parallelised memory, 555, 556
parallelised shift register, 557, 559
parameter coding, 464
parasitic capacitances, 277, 513, 546, 551, 552, 703
pass-fail diagram, 448, 449
pinch-off, 216, 220, 224, 227, 251, 253, 264, 271, 287, 288
pipelined microprocessors, 567,568
pipelined, 129
plasma etching, 68, 151

PLL frequency multiplier, 576, 577
PLL prescaler, 786
PLL, 605, 607, 796
power and throughput, 563
power management, 577
power-delay product, $98,519,538$
precharged logic, 554
precharging, 753
principal component analysis (PCA), 613
process variations, 612
PTAT, 870, 914, 980, 981
Ptolemy, 22, 44, 821
pulse measurement, 220, 239, 240
quadratic mixer, $852,853,855$
qualitative arithmetic, 37
qualitative reasoning, 32
quality, 2, 431, 434
quantisation noise, 697, 828, 967, 986
quantum effects, 139, 176
race-free, 542, 576
radiated emissions, 384, 386
radiation effects, $168,185,191,202$
radiation hardness, 167,185
rail-to-rail switch, 125, 719, 720
RAM, 566, 575
random errors, 961, 1004
random failure, 435
rate dependence, 232
realistic fault, 494, 499, 500
receiver dynamic range, 769,770 , 774
receiver leakage, 795
regulated cascode, 732, 733, 735
reliability, $57,87,91,170,189,432$, $434,435,436,450,451,453,454$, 458, 462, 469, 493, 965
replica biasing, 704,705
resistive-capacitive PSD transducers, 1007
response surface methodology
(RSM), 611, 642, 645
reverse bias secondary breakdown, 438
RISC architecture, 560, 561
RISC microcontrollers, 564
robustness, 448, 525
roller coaster curve, 444,445
ROM, 566, 567, 575
routing capacitance, 547
S 2 I clock generator, 737, 738
$\mathrm{S}^{2} \mathrm{I}$ GaAs cell, 728
S $^{2} \mathrm{I}$, 693, 694, 710
SALIM, 30
sample averaging, 594
sampling demodulators, 826, 827
sampling mixer, 849
Seebeck effect, 994
self cascode, 719
sensitivity analysis, 622
sensor and quantisation noise, 986
sensor data communication, 969
sensor data processing, 968,969 , 1009, 1013
sensor self heating, 985
sensors' technology, 970, 971, 973
series connected doublet, 907
Shainin experiments, 447
short faults, 500,504
SI clock generator, 737, 738
silicon micromachining, 972
silicon processes, 6
SIMOX, 140, 142, 974
simulation flow control, 64
single-event upset, 168, 170, 190, 193, 197
single-sideband upconverter, 793
singly balanced active mixer, 873
slew-rate, 669, 685, 685
slope factor $n, 158,159,162,164$, 252, 718
small swing differential logic, 120 , 596
small-signal AC analysis, 213, 355, 506
smart capacitive sensors, 1010, 1011
smart contactless potentiometers, 1000
smart sensor, 45
smart sensor, 960
smart temperature sensors, 977, 983
smart transducer interface, 960
S^{N} I cell, 730, 731, 732
SNR, 3, 12, 247, 489, 491, 690
soft (deviation) faults, 492
software radio, 14
SOI (medium-thickness), 156
SOI (thick-film), 154
SOI (thin-film), 154, 155
SOI accumulation mode, 156
SOI lateral bipolar BJT, 173, 174
SOI LV, LP, HF, CMOS circuits, 161
SOI subthreshold slope, 158, 159, 162
SOI transistor operating modes, 155
SOI volume inversion, 157
SOI, 5, 139
SONET, 583
source and load isolation, 676, 677
source model, 504
source open, 723, 725
speed limitation, MOS device, 512, 517
speed-dynamic-range product, 709, 710
spread-spectrum, $10,800,817$
spurii, 771,858
stability of CFOA, 669, 675, 681
state diagram, $465,466,467,469$, 470
static logic, $74,108,521,524,531$, 541
statistical and singularity analysis, 311
statistical circuit simulation, 609, 635, 639
statistical data analysis, 28
statistical modelling, 610
statistical MOS model (SMOS), 615, 617, 620
statistical optimisation, 639
stray capacitance, 675
stressor probability density function, 442
stressor set, 431, 436, 449, 452
stressor/susceptibility analysis, 445 , 447, 448, 450
stressor/susceptibility interaction, 437, 443, 445
sub-volt receiver circuits, 776, 777
substrate attenuator, 409
substrate contact, 126, $393,394,395$, 397, 404, 405
substrate coupling, $378,381,393$, 395
substrate current, 172
substrate extraction, 411, 412
substrate splitting, 409, 410, 424
superpipeline microprocessor, 571
superscalar microprocessor, 570
supply-current sensing, 660
susceptibility models, 446
sweep, 363
switched-capacitor analysis, 359
switched-capacitor, 689, 691, 716, 720, 727, 828
switched-current, 689, 691
switched-transconductance, 707, 720
switching mixer, 844
synchronous converter, 966
system-level simulation, $21,22,362$, 363
systematic errors, 961, 1004
Taguchi experiments, 2, 447
tap, 590, 591
tapering, 518, 519
task execution, 537, 561
task scheduler, 565
TCAD, 3, 57, 58
TCP/IP protocol, 750

TDMA, 10, 823
technology (social sense), 2
technology optimisation, 88, 95, 98
technology scaling, 108, 109, 161, 403, 530, 531
temperature sensing elements, 978
terminal portability, 748
termistor, 978
test stimulus generator, $487,488,489$
test vector generation, 551
testability, 475, 477
text/graphics databases, 745,746
thermal conductivity sensors, 998
thermal mass flow sensor, 996
thermal sensors, $977,988,989$
thermal structures, 988
thermocouple, 978
thermopiles, 993
time-step control, APLAC, 346
timing accuracy, 595
timing jitter, 595, 606
timing, 518, 520, 521, 522, 569, 719
tolerance simulation, 450, 451
transadmittance, 280, 351
transcapacitances, 274, 949
transconductance degradation, 171
transducer interface, 967
transduction process, 968
transgyrator, 350
transient analysis, 346, 347, 506
transistor sizing, 518, 519, 536, 546, 634, 635
transit time, 279, 309
transition probability, 540, 542
translinear, 44, Chapter 23
transmission error, 693, 698, 717, $718,729,730,732$
transmission gate, 108, 545, 553
transmitter imperfections, 771
transresistor, 703, 704, 705, 825
trapped particles, 186
triple well, 125,126
tristate gate, 545, 548, 550, 553
true RMS converters, 998
true-single-phase clocking (TSPC), 518, 519, 520, 522
tuning, 720
two-dimensional non-linearities, 947
two-tone intermodulation, 863, 930
ULP tools, 118
ultra-low-power, $70,85,86,118$, $126,529,535$
unbalanced switching mixer, 847
user interface, 59, 61, 747, 755
V-I converter, 631, 677
VBIC95 BJT model, 301, 307, 308
VCO, 607, 796, 798, 1003
velocity saturation, $89,512,528$
very long instruction word
architecture, (VLIW), 571, 572
video databases, 746
visualisation, 33,38
voltage attenuation SI cells, 711, 715
voltage mode, 660
voltage op-amp (VOA), 657, 654, 662, 665, 828
voltage-controlled current source (VCCS), 336, 337, 352, 361
Von Neuman architecture, 561

Voronoi, 66, 67, 412
Volterra analysis, 933, 938
V_{T} compensation, $112,113,114,117$, 119, 122
V_{T} definition, 87,92
V_{T} modulation, 226, 395
V_{T} shift, 115, 116, 171, 202, 263
V_{T} variation, 552, 715
watchdog, 464, 467, 471
weak inversion/subthreshold, 71 , $119,248,255,256,275,279,283$, 289, 293, 650, 714, 717, 718
wear-out, $445,446,458,464$
well tuning, 122-126
Wheatstone configuration, 963
wideband CFOA, 678, 683
Widlar current mirror, 680, 682
wire power, 547
wireless communications, 749
wireless portable systems, 745
XOR gate, 587, 599, 601, 602
yield, $33,57,609,614,615,617$, 639, 644

Low-Power HF Microelectronics A unified approach

This book presents a thorough and integrated treatment of key topics in the field of low-voltage, low-power, mixed-mode design for the manufacture of low-cost, high-performance, robust integrated circuits. It brings together innovative modelling, simulation and design techniques in CMOS, SOI, GaAs and BJT, optimally combining process, device and design knowledge of low-voltage, high-frequency systems, including smart sensors.
The book meets the needs of mixed-signal designers and reflects the rise in high-performance, ultra-low-power digital systems combined with wireless multimedia telecommunications. The text is supported throughout by realistic application examples from both industry and academia, and a wealth of references to literature including many Internet sources.
In addition to being an excellent reference work, the material is valuable to practising engineers and researchers in microelectronics, industrial and academic, as well as to senior students in this field.
It is the merit of this book to assemble an impressive collection of up-to-date and original tutorial contributions from industry and university specialists spanning the whole hierarchy of microelectronics.'
from the Foreword by Professor Eric A. Vittoz

Gerson A.S. Machado obtained his BSC and MSC degrees in electrical engineering from the Federal University of Minas Gerais State, Brazil, in 1987 and 1990 respectively, and his Ph.D. degree in electrical engineering from Imperial College, London, in 1997. Between his BSc and MSc degrees he was the founding director of Hepta Systems, a medical and video instrumentation company, and also lecturer of biomedical instrumentation at the Catholic University of Minas Gersa, Brazil.
Machado was co-organiser and technical programme chair of the EBMicro95 meeting (microelectronics for telecommunications) in Recife-PE, Brazil. He has lectured at companies and universities across the world and has published in the fields of biomedical and clinical engineering, technology transfer and planning, and low-power VLSI circuit design. His interests include medical instruments involving lowpower integrated electronics, modelling, simulation and design of mixed-mode ICs.

