Control Engineering Series 89

Control-Based Operating System Design

Alberto Leva, Martina Maggio, Alessandro Vittorio Papadopoulos and Federico Terraneo **IET CONTROL ENGINEERING SERIES 89**

Control-Based Operating System Design

Other volumes in this series:

Volume 8	A History of Control Engineering, 1800–1930 S. Bennett
Volume 18	Applied Control Theory, 2nd Edition J.R. Leigh
Volume 20	Design of Modern Control Systems D.J. Bell, P.A. Cook and N. Munro (Editors)
Volume 28	Robots and Automated Manufacture J. Billingsley (Editor)
Volume 33	Temperature Measurement and Control J.R. Leigh
Volume 34	Singular Perturbation Methodology in Control Systems D.S. Naidu
Volume 35	Implementation of Self-tuning Controllers K. Warwick (Editor)
Volume 37	Industrial Digital Control Systems, 2nd Edition K. Warwick and D. Rees (Editors)
Volume 39	Continuous Time Controller Design R. Balasubramanian
Volume 40	Deterministic Control of Uncertain Systems A.S.I. Zinober (Editor)
Volume 41	Computer Control of Real-time Processes S. Bennett and G.S. Virk (Editors)
Volume 42	Digital Signal Processing: principles, devices and applications N.B. Jones and
	J.D.McK. Watson (Editors)
Volume 44	Knowledge-based Systems for Industrial Control J. McGhee, M.J. Grimble and
	A. Mowforth (Editors)
Volume 47	A History of Control Engineering, 1930–1956 S. Bennett
Volume 49	Polynomial Methods in Optimal Control and Filtering K.J. Hunt (Editor)
Volume 50	Programming Industrial Control Systems Using IEC 1131-3 R.W. Lewis
Volume 51	Advanced Robotics and Intelligent Machines J.O. Gray and D.G. Caldwell (Editors)
Volume 52	Adaptive Prediction and Predictive Control P.P. Kanjilal
Volume 53	Neural Network Applications in Control G.W. Irwin, K. Warwick and K.J. Hunt (Editors)
Volume 54	Control Engineering Solutions: a practical approach P. Albertos, R. Strietzel and N. Mort
	(Editors)
Volume 55	Genetic Algorithms in Engineering Systems A.M.S. Zalzala and P.J. Fleming (Editors)
Volume 56	Symbolic Methods in Control System Analysis and Design N. Munro (Editor)
Volume 57	Flight Control Systems R.W. Pratt (Editor)
Volume 58	Power-plant Control and Instrumentation: the control of boilers and HRSG systems
	D. Lindsley
Volume 59	Modelling Control Systems Using IEC 61499 R. Lewis
Volume 60	People in Control: human factors in control room design J. Noyes and M. Bransby
	(Editors)
Volume 61	Nonlinear Predictive Control: theory and practice B. Kouvaritakis and M. Cannon (Editors)
Volume 62	Active Sound and Vibration Control M.O. Tokhi and S.M. Veres
Volume 63	Stepping Motors, 4th edition P.P. Acarnley
Volume 64	Control Theory, 2nd Edition J.R. Leigh
Volume 65	Modelling and Parameter Estimation of Dynamic Systems J.R. Raol, G. Girija and J. Singh
Volume 66	Variable Structure Systems: from principles to implementation A. Sabanovic, L. Fridman
	and S. Spurgeon (Editors)
Volume 67	Motion Vision: design of compact motion sensing solution for autonomous systems
	J. Kolodko and L. Vlacic
Volume 68	Flexible Robot Manipulators: modelling, simulation and control M.O. Tokhi and
	A.K.M. Azad (Editors)
Volume 69	Advances in Unmanned Marine Vehicles G. Roberts and R. Sutton (Editors)
Volume 70	Intelligent Control Systems Using Computational Intelligence Techniques A. Ruano
	(Editor)
Volume 71	Advances in Cognitive Systems S. Nefti and J. Gray (Editors)
Volume 72	Control Theory: a guided tour, 3rd Edition J.R. Leigh
Volume 73	Adaptive Sampling with Mobile WSN K. Sreenath, M.F. Mysorewala, D.O. Popa and
	F.L. Lewis
Volume 74	Eigenstructure Control Algorithms: applications to aircraft/rotorcraft handling
	qualities design S. Srinathkumar
Volume 75	Advanced Control for Constrained Processes and Systems F. Garelli, R.J. Mantz and
	H. De Battista
Volume 76	Developments in Control Theory towards Glocal Control L. Qiu, J. Chen, T. Iwasaki and
Value 77	H. Fujioka (Editors)
Volume 77	Further Advances in Unmanned Marine Vehicles G.N. Roberts and R. Sutton (Editors)
Volume 78	Frequency-Domain Control Design for High-Performance Systems John O'Brien
Volume 81	Optimal Adaptive Control and Differential Games by Reinforcement Learning
Volume 88	Principles D. Vrabie, K. Vamvoudakis and F. Lewis
	Distributed Control and Filtering for Industrial Systems M. Mahmoud

Volume 91 An Introduction to Fractional Control D. Valério and J. Costa

Control-Based Operating System Design

Alberto Leva, Martina Maggio, Allessandro Vittorio Papdopoulos and Federico Terraneo

The Institution of Engineering and Technology

Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England & Wales (no. 211014) and Scotland (no. SC038698).

© 2013 The Institution of Engineering and Technology

First published 2013

This publication is copyright under the Berne Convention and the Universal Copyright Convention. All rights reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may be reproduced, stored or transmitted, in any form or by any means, only with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publisher at the undermentioned address:

The Institution of Engineering and Technology Michael Faraday House Six Hills Way, Stevenage Herts, SG1 2AY, United Kingdom

www.theiet.org

While the author and publisher believe that the information and guidance given in this work are correct, all parties must rely upon their own skill and judgement when making use of them. Neither the author nor the publisher assumes any liability to anyone for any loss or damage caused by any error or omission in the work, whether such an error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

The moral rights of the author to be identified as author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data

A catalogue record for this product is available from the British Library

ISBN 978-1-84919-609-3 (hardback) ISBN 978-1-84919-610-9 (PDF)

Typeset in India by MPS Limited Printed in the UK by CPI Group (UK) Ltd, Croydon To Clara and Aurora, with love. (A.L.)

To my parents, for their unconditioned love. (M.M.)

To my grandfather, my parents, my sister, Ettore and Anna. (A.V.P.)

> To my father and my mother, for their support. (F.T.)

It was stated at the outset, that this system would not be here, and at once, perfected. You cannot but plainly see that I have kept my word. But I now leave my cetological System standing thus unfinished, even as the great Cathedral of Cologne was left, with the cranes still standing upon the top of the uncompleted tower. For small erections may be finished by their first architects; grand ones, true ones, ever leave the copestone to posterity. God keep me from ever completing anything. This whole book is but a draught—nay, but the draught of a draught. Oh, Time, Strength, Cash, and Patience! H. Melville, Moby Dick, 32

Contents

Lis	xiv			
Pro	XV			
Ac	xix			
		8		
1	Intr	oduction	1	
	1.1	Βίοι παράλληλοι (two parallel stories)	3	
	1.2	Control-based design as a means for convergence	6	
2	A by	yte of systems theory	11	
-	2.1	Dynamic systems	11	
		2.1.1 State-space representation	13	
		2.1.2 Motion, equilibrium, stability	15	
	2.2	The linear time-invariant (LTI) case	16	
		2.2.1 Motion and equilibrium	16	
		2.2.2 Stability	17	
	2.3	Input-output representation of LTI systems	19	
		2.3.1 The \mathcal{Z} transform	19	
		2.3.2 The transfer function	20	
		2.3.3 Block diagrams	21	
		2.3.3.1 Series connection	22	
		2.3.3.2 Parallel connection	22	
		2.3.3.3 Feedback (loop) connection	23	
	2.4	The frequency response	24	
		2.4.1 Definition	24	
		2.4.2 Interpretation and use	25	
	2.5	Time domain responses	27	
		2.5.1 Impulse response of FIR systems	28	
		2.5.2 Impulse response of IIR systems	28	
		2.5.3 Step response of FIR and IIR systems	30	
	2.6	Concluding remarks	30	
	2.7	Problems	30	
3	Мос	delling for computing systems	33	
	3.1	34		
	3.2	2 Modelling and simulation		

3.3 Examples		Exam	ples	37
		3.3.1	Core allocation	37
		3.3.2	Producer and consumer	38
		3.3.3	Transmission over wireless sensor networks	39
			Communication bandwidth partitioning	39
	3.4	Concl	uding remarks	41
4	A by	te of ba	asic control theory	43
	4.1		fications	43
	4.2		control schemes	44
		Feedb	ack and its power	45
	4.4	Feedback control synthesis		47
		4.4.1	Synthesis by transfer function assignment	
			(set point tracking)	47
		4.4.2		
			(disturbance rejection)	49
		4.4.3	Synthesis by dominant pole assignment	50
	4.5		typical feedback controllers	50
			Proportional control	51
			Integral control	52
			Proportional-integral (PI) control	52
	4.6		ard controllers on simple plants	53
	4.7		controller model to control law	54
			Managing control saturations	55
	4.8	Proble	ems	56
5		eduling		57
	5.1	Mode	6	58
			The core phenomenon	61
	5.2		ol synthesis	62
			Inner loop	63
			Outer loop	64
		5.2.3	Complexity comparison with existing policies	65
			Simulation example	68
	5.3		bint generation for (soft) real-time systems	68
			Overload detection and rescaling	70
			Reinitialisation and feedforward	71
	5.4	-	imental results and comparisons	73
		5.4.1	MiBench benchmark	73
		5.4.2	Hartstone benchmark	74
		5.4.3	Extended Hartstone benchmark	77
		5.4.4	Summary of results	77
	5.5	-	bint generation for general purpose systems	78
		5.5.1	Tasks with periodic deadlines	79
		5.5.2	Tasks with a single deadline	80

		5.5.3	Tasks without deadlines	80
		5.5.4	Event-triggered tasks	81
		5.5.5	Parameter setting	81
		5.5.6	Simulation examples	82
		5.5.7	Concluding remarks	84
6	Men	nory m	anagement	85
	6.1	Proble	em statement	88
	6.2	The pl	lant model	89
			Requirements	92
	6.3		ol synthesis	93
	6.4		ation results	96
	6.5	-	mentation-related considerations	96
	6.6	Concl	uding remarks	98
7	A by	te of ad	lvanced control techniques	101
	7.1	Mode	l Predictive Control	101
		7.1.1	Predictive control	101
		7.1.2	Review on predictive control techniques	102
		7.1.3	1	102
		7.1.4	Predictive control within a single optimisation	
			window	103
			7.1.4.1 Prediction of state and output variables	104
			7.1.4.2 Optimisation	105
		7.1.5	Receding-horizon predictive control	106
			7.1.5.1 Closed-loop control system	107
	7.2		l identification and adaptive systems	108
			Least squares	108
			Persistent excitation	109
			Recursive least squares	111
	7.3	-	ive control techniques	114
			Online identification and adaptive control	114
		7.3.2	1	115
			7.3.2.1 Adaptive identification algorithms with	
			forgetting factor	115
	7.4	Proble	ems	116
8	Rese	ource al	llocation	119
	8.1	Literature review		
	8.2	Contro	ol-based design	122
		8.2.1	Sensing	122
		8.2.2	Actuation	123
		8.2.3	Control	123
			8.2.3.1 Heuristic	123

			8.2.3.2	Basic control	124
			8.2.3.3 A	Adaptive control	127
		8.2.4	Modelling	g for advanced control	128
		8.2.5	Regulating	g with tuning	130
	8.3	Experi	imental resu	ılts	131
		8.3.1	Swaptions	3	131
		8.3.2	Vips		133
	8.4	Conclu	uding remai	rks	135
9	Power-awareness				137
	9.1	A case	2		138
		9.1.1		alysis, sensors and actuators	138
		9.1.2	-	Data collection	140
		9.1.3	-	Control design	142
		9.1.4	-	ontrol structure parameterisation	143
	9.2	-	imental resu	ılts	143
	9.3		alisation		148
		9.3.1	Step 1		148
		9.3.2	1		148
		9.3.3	1		149
		9.3.4	1		149
	9.4	Conclu	uding remai	rks	150
10	An experimental OS: Miosix				
10	An	experin	nental OS:	Miosix	151
10	An 10.1	-	nental OS: ivations	Miosix	151
10	10.1 10.2	1 Mot 2 Req	ivations uirements a	and design decisions	
10	10.1 10.2	1 Mot 2 Req	tivations	and design decisions	151
10	10.1 10.2	1 Mot 2 Req 3 Arcl	ivations uirements a	and design decisions Miosix	151 152
10	10.1 10.2 10.3	1 Mot 2 Req 3 Arcl 4 The	ivations uirements a hitecture of Miosix sch	and design decisions Miosix	151 152 153
10	10.1 10.2 10.3	1 Mot 2 Req 3 Arcl 4 The	ivations uirements a hitecture of Miosix sch .1 Plugga	and design decisions Miosix leduler	151 152 153 154
10	10.1 10.2 10.3	1 Mot 2 Req 3 Arcl 4 The 10.4	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in	and design decisions Miosix leduler able schedulers in Miosix	151 152 153 154 156
10	10.1 10.2 10.3	1 Mot 2 Req 3 Arcl 4 The 10.4	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in	and design decisions Miosix deduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators	151 152 153 154 156 157
10	10.1 10.2 10.3	1 Mot 2 Req 3 Arcl 4 The 10.4 10.4	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2	and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix 1 Sensors and actuators 2 Context switch implementation	151 152 153 154 156 157 157
10	10.1 10.2 10.3 10.4	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 are direction	and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems	151 152 153 154 156 157 157 158
	10.1 10.2 10.3 10.4	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 are direction	and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix 1 Sensors and actuators 2 Context switch implementation ns	151 152 153 154 156 157 157 158 159
	10.1 10.2 10.3 10.4	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu 5 Futu 1 Con 2 Prob	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction rspectives a ttrol-related blems not tr	and design decisions Miosix deduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein	151 152 153 154 156 157 157 158 159 161 161 163
	10.1 10.2 10.3 10.4 10.5 Fut 11.1	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu 5 Futu 1 Con 2 Prob	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction rspectives a ttrol-related blems not tr	and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems concepts coverage	151 152 153 154 156 157 157 157 158 159 161 161
	10.1 10.2 10.3 10.4 10.5 Fut 11.1	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu 5 Futu 1 Con 2 Prob	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction rspectives a ttrol-related olems not tr .1 Time s	and design decisions Miosix deduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein	151 152 153 154 156 157 157 158 159 161 161 163
	10.1 10.2 10.3 10.4 10.5 Fut 11.1	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu 5 Futu 1 Con 2 Prot 11.2	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction rspectives a trol-related blems not tr .1 Time s .2 Bandw	and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein synchronisation	151 152 153 154 156 157 157 158 159 161 163 163
	10.1 10.2 10.3 10.4 10.5 Fut 11.1	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu 5 Futu 1 Con 2 Prob 11.2 11.2 11.2	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction rspectives a trol-related blems not tr .1 Time s .2 Bandw	and design decisions Miosix heduler able schedulers in Miosix mplementation in Miosix 1 Sensors and actuators 2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein synchronisation width scheduling heral and queue management	151 152 153 154 156 157 157 158 159 161 163 163 163 163
	10.1 10.2 10.3 10.4 10.5 Fut 11.1 11.2	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu 5 Futu 1 Con 2 Prob 11.2 11.2 11.2	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 are direction spectives a ttrol-related blems not tr .1 Time s .2 Bandw .3 Periph isaged exter	and design decisions Miosix heduler able schedulers in Miosix mplementation in Miosix 1 Sensors and actuators 2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein synchronisation width scheduling heral and queue management	151 152 153 154 156 157 157 158 159 161 163 163 163 163 164
	10.1 10.2 10.3 10.4 10.5 Fut 11.1 11.2	1 Mot 2 Req 3 Arcl 4 The 10.4 5 Futu 5 Futu 5 Futu 10.4 5 Futu 10.4 11.2 11.2 11.2 11.2 11.2 11.2	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction spectives a ttrol-related blems not tr .1 Time s .2 Bandw .3 Periph isaged exter .1 Multi-	and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein synchronisation width scheduling heral and queue management nsions	151 152 153 154 156 157 157 157 158 159 161 163 163 163 163 164 164
	10.1 10.2 10.3 10.4 10.5 Fut 11.1 11.2	 Mot Req Arcl Arcl The 10.4 10.4 10.4 5 Futu 6 Futu 6 Futu 6 Futu 6 Futu 6 Futu 6 Futu 7 Fut 7 Fut 8 Fut 8 Fut<td>ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction spectives a ttrol-related blems not tr .1 Time s .2 Bandw .3 Periph isaged exter .1 Multi- .2 Bridgi .3 Therm</td><td>and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein synchronisation width scheduling heral and queue management nsions core and multi-CPU scheduling</td><td>151 152 153 154 156 157 157 157 158 159 161 163 163 163 163 164 164</td>	ivations uirements a hitecture of Miosix sch .1 Plugga .2 I+PI in 10.4.2 10.4.2 ure direction spectives a ttrol-related blems not tr .1 Time s .2 Bandw .3 Periph isaged exter .1 Multi- .2 Bridgi .3 Therm	and design decisions Miosix leduler able schedulers in Miosix mplementation in Miosix .1 Sensors and actuators .2 Context switch implementation ns and cyber-physical systems concepts coverage reated herein synchronisation width scheduling heral and queue management nsions core and multi-CPU scheduling	151 152 153 154 156 157 157 157 158 159 161 163 163 163 163 164 164

Α	Code fragments			171
	A.1	Simulation code		171
		A.1.1	Bandwidth allocation simulation	171
		A.1.2	Per-process swap-out partitioning	172
		A.1.3	Full memory management simulator	172
		A.1.4	Scheduler simulator	175
	A.2 An implementati		plementation example	180
References				185
Inc	lex	191		

List of trademarks

- Fortran is a trademark of Lahey Computer Systems Inc.
- Linux is a registered trademark of Linus Torvalds.
- Mac OS X is a registered trademark of Apple Computer Corporation.
- POSIX is a registered trademark of the IEEE.
- UNIX is a registered trademark of The Open Group.
- Scilab is a registered trademark of Inria.
- VAX and VMS are trademarks of Digital Equipment Corp.
- Windows is a trademark of Microsoft Corp.

All other trademarks, registered trademarks and names are the property of their respective owners.

Most often, a research topic becomes the subject of books when it is approaching maturity, and a significant *corpus* of results and applications is available.

As suggested in the introductory quote, the story of this book is quite different. When we started approaching the design (not just the control) of operating system components in a system-theoretical manner, we were in fact quite surprised how sparingly the computer science and the control community have been interacting so far, at least in the sense described herein. Crudely, after a few years of research on the matter, we decided to write this book because we are convinced that the proposed approach is an important step forward with respect to present design practices, but to explain why and how clearly enough, too much space is required to comply with any other form of publication.

As such, this book is indeed 'but the draught of a draught'. Its main purpose is to sketch out a research path that can be reasonably expected to last for several years, providing some results to justify the required effort.

To this end, we decided to include some chapters on systems and control theory. These are in no sense to be thought of as a course on the matter. On the contrary, we tried to present only what is needed to follow and understand our proposals, addressing essentially a computer scientist who has little or no knowledge on the systems and control theory. The only constraint we adhered to is to provide a consistent treatise without conceptual jumps, but no doubt a number of important subjects are here omitted. For the convenience of the reader coming from the control community, on the other hand, we briefly present each addressed object and problem, thus reporting ideas and facts that for the computer scientist are totally obvious. We hope that this helps both types of reader feel comfortable with the text.

In the book we also provide some results, basically addressing a collection of problems that traditionally are not viewed from the control standpoint, to show the insight and simplicity enhancements that such a viewpoint conversely yields.

Overall, the book is organised as follows:

- Chapter 1 provides a general introduction to the addressed matter and motivates the adopted approach, also by means of a very synthetic historical analysis.
- Chapter 2 introduces the few required basic elements of systems theory, as anticipated. This chapter and the following Chapter 4 end with a 'problems' section, to allow the interested reader to verify his/her acquisition of the illustrated concepts.

- Chapter 3 applies the modelling-related ideas of Chapter 2 to the particular domain addressed herein, evidencing its peculiarities. Some introductory examples are reported and commented on.
- Chapter 4 deals with the required basic elements of *control* theory, adopting an attitude, and consequently an organisation, analogous to those of Chapter 2.
- Chapter 5 deals with task scheduling. A general dynamic model is proposed, and based on that, a methodology is presented to design a scheduler along the controlbased paradigm. Said methodology is then applied, leading to two scheduling algorithms, that are comparatively tested with respect to classical (non-controlbased) ones.
- Chapter 6 addresses the problem of memory management, and proposes for it too a control-based solution. Simulation results are presented and commented on, to evidence the obtained advantages.
- Chapter 7 presents, limiting again the scope to the bare essential, some control techniques more advanced than those of Chapter 4 that are used in the following one. In particular, the chapter deals with Model Predictive Control and model identification, and ends with a 'problems' section for the same reason as Chapters 2 and 4.
- Chapter 8 treats more in general the resource allocation problem. Thanks to the adoption of more a high-level viewpoint with respect to the previous chapters, here a design methodology is sketched out and supported, that can be used as a *modus operandi* when addressing numerous problems that appear quite different from the application point of view, but in the context of the systems theory have a definitely uniform mathematical structure.
- Chapter 9 applies the ideas presented so far to power-aware resource management. Apart from discussing another interesting application case, the main point here is to evidence how a control-based design attitude is naturally keen to host problems with very different requirements.
- Chapter 10 presents the Miosix kernel, i.e., the nucleus of an operating system that is being developed along the proposed approach. Motivations for developing an *ad hoc* kernel are provided, the realised functionalities are described, and future developments are outlined.
- Chapter 11, after all the different issues touched in the previous ones, suggests a way of casting them into a unitary view conceptually connected to that of 'cyber-physical' systems, thereby discussing as a work in progress some further ways in which a control-theoretical point of view can be helpful for design, analysis and assessment.

Chapters not related to introducing systems and control theory material do not have a 'problems' section for quite apparent reasons. The interested reader is, however, encouraged to try out the presented solutions, and also to use the approach to design and test his/her own ones, based, e.g., on the Miosix kernel, and the code examples reported in Appendix A. In particular, the reader – especially the computer scientist – is encouraged to use dynamic models for design, and to test the devised solutions by means of dynamic simulation.

Among the functionalities of the typical operating system, scheduling receives in this book quite significantly a dominant attention. This choice was dictated basically by two reasons. The first is that scheduling is undoubtedly a core functionality, and in some sense maybe the most important one. The second is that we wanted to present a complete solution, illustrating the proposed approach from the modelling phase till the realisation of the necessary code, so as to show the importance of giving the design process a system-theoretical flavour wherever possible and applicable. Quite intuitively, doing the same for all the functionalities mentioned and addressed in the book would have lead to a lengthy treatise with numerous repetitions. The abstraction and re-interpretation capabilities of the reader, in our opinion, can certainly suffice to allow him/her to re-apply the proposed ideas in different contexts, and for this reason only some guidelines for such re-applications are provided.

On the same front, several components that are considered part of an operating system – e.g., the file system – are not treated at all. In fact, as the book title, we might as well have chosen 'Control-based *kernel and operating system services* design'. On one hand doing so would probably have better reflected the detailed book content, but on the other we have the impression that it would have somehow limited the view on the potentialities of the proposed approach. We hope that after going through the book, the reader can share with us the belief that once a kernel and its services are designed and assessed as suggested, the rest of the operating system can rely on them and take profit of said design in quite a straightforward manner. The concluding remarks of Chapter 11 will further deal with this particular topic.

The book attempts to maintain an intermediate attitude between presenting solutions, which should help the computer scientist appreciate the usefulness of the approach, and evidencing the need for a more methodologically grounded treatise of some issues that tend to be considered, especially in the control community, as implementation-related matter of facts.

The authors are not sure at all that the best compromise between those two attitudes was here found, but hope that the effort will be appreciated, and even more important, that the *necessity* of such an effort will be acknowledged. Of course, the establishment of both a comprehensive 'systems and control theory for computer science' and of the consequent engineering principles is a formidable task, of which we do not claim here to present but the very initial steps.

We correspondingly understand that the perspective shift here proposed is significant indeed, and although we did our best to keep in mind implementation-related facts, we expect that besides some certainties, the matter exposed herein will most likely give rise to discussions. We hope that this happens, because the solutions proposed here can surely be improved, and doing this together would culturally enrich both the computer and the control community.

In fact, we believe that the foreseen convergence of the two communities just mentioned not only is highly beneficial for both, but given the steady complexity increase experience in virtually any domain related to computing systems at large, it may well become a necessity not so far in the future. As such, we strongly hope that this work, despite the undoubted imperfections of a research path that started out quite recently, can not only allow to appreciate some nice results, but above all foster a more strict inter-domain cooperation.

Alberto Leva Martina Maggio Alessandro Vittorio Papadopoulos Federico Terraneo

December 2012

Acknowledgements

We would like to express our gratitude to the many people who helped us through this book; to all those who provided support, talked things over, read, wrote, offered comments, allowed us to quote their remarks and assisted in the editing, proofreading and design.

This book contains our personal views on Control-Theoretical Design of Operating Systems, and our opinions were influenced by various sources. To start, we would like to thank our colleagues, who have contributed to shape our mind and to the design and implementation of some of the work presented in the following pages. During an early stage of development, Carlo Alberto Furia and Paola Spoletini provided very useful insight and comments on the scheduling problem. The resource allocation problem was extensively discussed with Anant Agarwal, Marco Domenico Santambrogio and Jacopo Panerati, whom we thank for their invaluable help; also the help of Sara Negro was important in this respect. A lot of the inspiration for this book came from Henry Hoffmann's work on the Application Heartbeat and SEEC project. His contribution — both theoretical and practical — was inestimable and we would never have written this book without his support. Riccardo Scattolini helped with his long experience, particularly by reviewing the chapters on basis systems and control theory, and many other colleagues involved in Automatic Control (the list would really be long) contributed with discussions and suggestions. Finally, we would like to thank Antonio Filieri and Carlo Ghezzi. Even if the research we carried on together has no place in this book, our interaction cleared our mind and allowed us to face problems with a different mindset.

We would like to express a final comprehensive thank to all the people involved in this research: even if some of them was left out from this short section, this does not mean that his/her contribution was less valuable. Indeed, without the help of so vast a group, this book simply would not exist.