Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Robust optimisation algorithm for the measurement matrix in compressed sensing

The measurement matrix which plays an important role in compressed sensing has got a lot of attention. However, the existing measurement matrices ignore the energy concentration characteristic of the natural images in the sparse domain, which can help to improve the sensing efficiency and the construction efficiency. Here, the authors propose a simple but efficient measurement matrix based on the Hadamard matrix, named Hadamard-diagonal matrix (HDM). In HDM, the energy conservation in the sparse domain is maximised. In addition, considering the reconstruction performance can be further improved by decreasing the mutual coherence of the measurement matrix, an effective optimisation strategy is adopted in order to reducing the mutual coherence for better reconstruction quality. The authors conduct several experiments to evaluate the performance of HDM and the effectiveness of optimisation algorithm. The experimental results show that HDM performs better than other popular measurement matrices, and the optimisation algorithm can improve the performance of not only the HDM but also the other popular measurement matrices.

References

    1. 1)
    2. 2)
      • [6]. Dimakis, A.G., Vontobel, P.O.: ‘LP decoding meets LP decoding: a connection between channel coding and compressed sensing’. 47th Annual Allerton Conf. on Communication, Control, and Computing, Allerton, 2009, pp. 815.
    3. 3)
    4. 4)
    5. 5)
      • [4]. Zhang, G., Jiao, S., Xu, X., et al: ‘Compressed sensing and reconstruction with Bernoulli matrices’. IEEE Int. Conf. on Information and Automation, Harbin, China, 2010, pp. 455460.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • [5]. Berinde, R., Indyk, P.: ‘Sparse recovery using sparse random matrices’. Preprint, 2008.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • [18]. Wang, Z., Arce, G.R., Paredes, J.L.: ‘Colored random projections for compressed sensing’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Honolulu, Hawaii, April 2007, pp. 873876.
    17. 17)
    18. 18)
      • [16]. Abolghasemi, V., Sanei, S., Ferdowsi, S., et al: ‘Segmented compressive sensing’. IEEE/SP 15th Workshop on Statistical Signal Processing, Cardiff, UK, September 2009.
    19. 19)
    20. 20)
    21. 21)
      • [26]. Do, T.T., Gan, L., Nguyen, N., et al: ‘Sparsity adaptive matching pursuit algorithm for practical compressed sensing’. 42nd Asilomar Conf. on Signals, Systems and Computers, Asilomar, 2008, pp. 581587.
    22. 22)
      • [10]. Gan, L., Do, T.T., Tran, T.D.: ‘Fast compressive imaging using scrambled block hadamard ensemble’. 16th European IEEE Signal Processing Conf., Lausanne, Switzerland, 2008, pp. 15.
    23. 23)
    24. 24)
      • [8]. Yin, W., Morgan, S., Yang, J., et al: ‘Practical compressive sensing with toeplitz and circulant matrices’. Proc. SPIE, Huangshan, China, 2010, vol. 7744, p. 77440K.
    25. 25)
      • [1]. Candès, E.J.: ‘Compressive sampling’. Proc. of the Int. Congress of Mathematicians, Madrid, Spain, 2006, pp. 14331452.
    26. 26)
    27. 27)
    28. 28)
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2018.1011
Loading

Related content

content/journals/10.1049/trit.2018.1011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address