access icon openaccess Multi-focus image fusion via morphological similarity-based dictionary construction and sparse representation

Sparse representation has been widely applied to multi-focus image fusion in recent years. As a key step, the construction of an informative dictionary directly decides the performance of sparsity-based image fusion. To obtain sufficient bases for dictionary learning, different geometric information of source images is extracted and analysed. The classified image bases are used to build corresponding subdictionaries by principle component analysis. All built subdictionaries are merged into one informative dictionary. Based on constructed dictionary, compressive sampling matched pursuit algorithm is used to extract corresponding sparse coefficients for the representation of source images. The obtained sparse coefficients are fused by Max-L1 fusion rule first, and then inverted to form the final fused image. Multiple comparative experiments demonstrate that the proposed method is competitive with other the state-of-the-art fusion methods.

Inspec keywords: image classification; dictionaries; image fusion; image representation; iterative methods

Other keywords: state-of-the-art fusion methods; dictionary construction; different geometric information; informative dictionary; source images; classified image bases; final fused image; sparse representation; multifocus image fusion; sufficient bases; corresponding sparse coefficients; Max-L1 fusion rule; constructed dictionary; dictionary learning

Subjects: Other topics in statistics; Interpolation and function approximation (numerical analysis); Computer vision and image processing techniques; Optical, image and video signal processing

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • [38]. Deshmukh, M., Bhosale, U.: ‘Image fusion and image quality assessment of fused images’, Int. J. Image Process. (IJIP), 2010, 4, (5), pp. 484508.
    7. 7)
    8. 8)
    9. 9)
      • [4]. Tsai, W.T., Qi, G., Chen, Y.: ‘A cost-effective intelligent configuration model in cloud computing’. 32nd Int. Conf. on Distributed Computing Systems Workshops, Macau, China, 2012, pp. 400408.
    10. 10)
    11. 11)
    12. 12)
      • [3]. Tsai, W.T., Qi, G.: ‘DICB: dynamic intelligent customizable benign pricing strategy for cloud computing’. IEEE Fifth Int. Conf. on Cloud Computing, Honolulu, HI, USA, 2012, pp. 654661.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • [23]. Ibrahim, R., Alirezaie, J., Babyn, P.: ‘Pixel level jointed sparse representation with RPCA image fusion algorithm’. 38th Int. Conf. on Telecommunications and Signal Processing (TSP), Prague, Czech Republic, 2015, pp. 592595.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • [41]. Tsai, W., Qi, G., Zhu, Z.: ‘Scalable SAAS indexing algorithms with automated redundancy and recovery management’, Int. J. Softw. Inf., 2013, 7, (1), pp. 6384.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • [1]. Wu, W., Tsai, W.T., Jin, C., et al: ‘Test-algebra execution in a cloud environment’. IEEE 8th Int. Symp. on Service Oriented System Engineering, Oxford, UK, 2014, pp. 5969.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
http://iet.metastore.ingenta.com/content/journals/10.1049/trit.2018.0011
Loading

Related content

content/journals/10.1049/trit.2018.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading