Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Probability of encapsulation of paclitaxel and doxorubicin into carbon nanotubes

Probability of encapsulation of paclitaxel and doxorubicin into carbon nanotubes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Micro & Nano Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Understanding the encapsulation and expulsion of drug molecules from nanocarriers is vital for the development of nanoscale drug delivery. In a previous paper, the authors investigate the acceptance and suction behaviour of the anticancer drug cisplatin entering a carbon nanotube. The previous work presented by the authors is extended and the encapsulation of two further anticancer drugs that have far more complicated molecular structures, namely paclitaxel and doxorubicin is investigated. Since these complicated molecular structures may enter the tube at any orientation, the results obtained for both drug molecules are represented in the form of the probability of encapsulation. The numerical data obtained displays an apparent periodicity and can be very accurately approximated by the first few terms of a Fourier series. Thus, a more sophisticated approach than previously detailed, which is applicable to far more complicated drug molecules is presented. The highest probability of achieving both encapsulation and maximum uptake (or suction energy) for paclitaxel occurs in the radii range 9.134<a<12.683 Å, while for doxorubicin this occurs in the range 8.855<a<10.511 Å. In addition, specific data is included for each orientation which might be useful in future experimental and molecular dynamics studies by medical scientists.

References

    1. 1)
      • B.J. Cox , N. Thamwattana , J.M. Hill . Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. acceptance and suction energies. Proc. R. Soc. A , 461 - 476
    2. 2)
      • J. Goodman , V. Walsh . (2001) The Story of Taxol.
    3. 3)
      • M. Yudasaka , K. Ajima , K. Suenaga , T. Ichihashi , A. Hashimoto , S. Iijima . Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem. Phys. Lett. , 42 - 46
    4. 4)
      • M. Bottini , F. Cerignoli , M.I. Dawson , A. Magrini , N. Rosato , T. Mustelin . Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules , 2259 - 2263
    5. 5)
      • A.R. Hilgenbrink , P.S. Low . Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci. , 2135 - 2146
    6. 6)
      • R.P. Feazell , N. Nakayama-Ratchford , H. Dai , S.J. Lippard . Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. , 8438 - 8439
    7. 7)
      • D.A. La Van , T. McGuire , R. Langer . Small-scale systems for in vivo drug delivery. Nat. Biotechnol. , 1184 - 1191
    8. 8)
      • D. Cui , F. Tian , C.S. Ozkan , M. Wang , H. Gao . Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. , 73 - 85
    9. 9)
      • T.A. Hilder , J.M. Hill . (2007) Continuous versus discrete for interacting carbon nanostructures, .
    10. 10)
      • M. Rigby , E.B. Smith , W.A. Wakeham , G.C. Maitland . (1986) The forces between molecules.
    11. 11)
      • D. Pantarotto , J.-P. Briand , M. Prato , A. Bianco . Translocation of bioactive peptides across cell membrance by carbon nanotubes. Chem. Commun. , 16 - 17
    12. 12)
      • R.C. Reid , J.M. Prausnitz , T.K. Sherwood . (1977) The properties of gases and liquids.
    13. 13)
      • G.F. Paciotti , D.G.I. Kingston , L. Tamarkin . Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. , 47 - 54
    14. 14)
      • F. Simon , H. Peterlik , R. Pfeiffer , J. Bernardi , H. Kuzmany . Fullerene release from the inside of carbon nanotubes: a possible route toward drug delivery. Chem. Phys. Lett. , 288 - 292
    15. 15)
      • T.A. Hilder , J.M. Hill . Theoretical comparison of nanotube materials for drug delivery. Micro Nano Lett. , 18 - 24
    16. 16)
      • N.W.S. Kam , H. Dai . Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. , 6021 - 6026
    17. 17)
      • S.-T. Yang , W. Guo , Y. Lin . Biodistribution of pristine single-walled carbon nanotubes in vivo. J. Phys. Chem. C , 17761 - 17764
    18. 18)
      • J.O. Hirschfelder , C.F. Curtiss , R.B. Bird . (1954) Molecular theory of gases and liquids.
    19. 19)
      • T.A. Hilder , J.M. Hill . Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Nanotech.
    20. 20)
      • M. Yoon , S. Berber , D. Tománek . Energetics and packing of fullerenes in nanotube peapods. Phys. Rev. B
    21. 21)
      • M. Ferrari . Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer , 161 - 171
    22. 22)
      • H. Hillebrenner , F. Buyukserin , M. Kang , M.O. Mota , J.D. Stewart , C.R. Martin . Corking nano test tubes by chemical self-assembly. J. Am. Chem. Soc. , 4236 - 4237
    23. 23)
      • C.R. Martin , P. Kohli . Emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. , 29 - 37
    24. 24)
      • V. Georgakilas , K. Kordatos , M. Prato , D.M. Guldi , M. Holzinger , A. Hirsch . Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. , 760 - 761
    25. 25)
      • P. Couvreur , C. Vauthier . Nanotechnology: intelligent design to treat complex disease. Pharm. Res. , 1417 - 1450
    26. 26)
      • W.B. Pratt , R.W. Ruddon , W.D. Ensminger , J. Maybaum . (1994) The anticancer drugs.
    27. 27)
      • L.A. Girifalco . Molecular properties of C60 in the gas and solid phases. J. Phys. Chem. , 858 - 861
    28. 28)
      • V.P. Torchilin . (2006) Nanoparticles as drug carriers.
    29. 29)
      • M. Bottini , S. Bruckner , K. Nika . Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. , 121 - 126
    30. 30)
      • C.M. Sayes , F. Liang , J.L. Hudson . Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. , 135 - 142
    31. 31)
      • N.W.S. Kam , T.C. Jessop , P.A. Wender , H. Dai . Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. , 6850 - 6851
    32. 32)
      • J.N. Israelachvilli . (1992) Intermolecular and surface forces.
    33. 33)
      • Chemical Databases Online: Dictionary of Drugs [database on the Internet] (Chapman & Hall/CRC Press, Boca Raton, FL) c2004- [updated 2007; cited 2007 Jun 4], available at: http://www.chemnetbase.com/.
    34. 34)
      • A. Bianco , J. Hoebeke , S. Godefroy . Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. , 58 - 59
    35. 35)
      • E.G. Rakov . The chemistry and application of carbon nanotubes. Russ. Chem. Rev. , 827 - 863
    36. 36)
      • H. Gao , Y. Kong , D. Cui . Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. , 471 - 473
    37. 37)
      • L. Gao , L. Nie , T. Wang . Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem , 239 - 242
    38. 38)
      • B.M. Kim , S. Qian , H.H. Bau . Filling carbon nanotubes with particles. Nano Lett. , 873 - 878
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl_20080008
Loading

Related content

content/journals/10.1049/mnl_20080008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address