Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Characteristics of signal propagation in multiferroic majority logic gates subjected to thermal noise

The error rates of multiferroic majority logic gate (MLG) in the presence of thermal noise fluctuation are evaluated via solving the Landau–Lifshitz–Gilbert equations. It is found that in the pre-stress condition, magnetisation orientations of nanomagnets in the MLG denote an initial 4°–10° departure from the easy axis direction due to random thermal noise field. This phenomenon may be the main origin of switching errors of multiferroic logic gates at high temperature. Specifically, in the post-stress condition, it has been seen that larger spacing between nanomagnets leads to a high error rate, up to 50%, which arises from weak dipolar coupling interactions and strong thermal fluctuations. However, opposed to their expected, small spacing between nanomagnets leads to a higher error rate, up to 90%, which mainly arises from spontaneous magnetisation reversal induced by weak stress anisotropy energy. Therefore, moderate spacing is very important to MLG switching at room temperature, for example the optimal spacing is 250–310 nm for MLG constructed with nanomagnets having shape anisotropy energy of 623 kT. These findings can provide guides on multiferroic logic circuit design.

References

    1. 1)
    2. 2)
    3. 3)
      • 26. Wei, B., Cai, L., Yang, X.K., et al: ‘Three-dimensional magnetization dynamics in majority gate studied by using multiferroic nanomagnet’, Acta Phys. Sin.-Ch. Ed., 2017, 66, (21), pp. 21750112075019.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 18. Fashami, M.S., Roy, K., Atulasimha, J., et al: ‘Magnetization dynamics, Bennett clocking and associated energy dissipation in multiferroic logic’, Nanotechnology, 2011, 2, (15), pp. 52015210.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 20. Fashami, M.S., Roy, K., Atulasimha, J., et al: ‘Corrigendum magnetization dynamics, Bennett clocking and associated energy dissipation in multiferroic logic’, Nanotechnology, 2011, 22, (30), pp. 95019502.
    17. 17)
    18. 18)
      • 24. Breitkreutz, S., Eichiwald, I., Kiermaier, J., et al: ‘1-bit full adder in perpendicular nanomagnetic logic using a novel 5-input majority gate’. EPJ Web Conf., Rhodes, Greece, 2014.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 1. The International Technology Roadmap for Semiconductors (ITRS): ‘Emerging Research Devices (ERD)’, Available at http://www.it rs.net 2015.
    25. 25)
      • 19. Yang, X.K., Zhang, B., Cui, H.Q., et al: ‘Magnetization dynamics in ferromagnetic coupling interconnect wire using multiferroic logic scheme’, Acta Phys. Sin-Ch. Ed., 2016, 65, (23), pp. 269274.
    26. 26)
    27. 27)
      • 2. Orlon, A., Immure, A., Caaba, G., et al: ‘Magnetic quantum-dot cellular automata: recent developments and prospects’, J. Nanoelectron. Optoelectron., 2008, 3, (1), pp. 114.
    28. 28)
    29. 29)
      • 29. Chikazumi, S.: ‘Physics of magnetism’ (Wiley, New York, 1964).
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2018.5065
Loading

Related content

content/journals/10.1049/mnl.2018.5065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address