access icon free Comparison between stereoscopic structure of nano-silver colloid pre- and post-intervened with PVA through arc discharge

The study used arc discharge method (ADM) to produce silver nano-colloid in deionised water (DW), and compared the difference between pre-adding and post-adding of polyvinyl alcohol (PVA). First, they added 50 ppm of PVA into 200 mL silver nano-colloid, named Ag-PVA. Second, they added 50 ppm of PVA into 200 mL DW as the dielectrics and produced silver nano-colloid through it, named PVA-Ag. Then they compared the differences between two samples with several instruments. They examined wavelength and absorbance by using UV–visible spectrophotometer (UV–vis), used Zetasizer to measure particle size and zeta potential, adopted scanning electron microscope (SEM) and transmission electron microscope (TEM) to observe shape, size, and distribution of the silver nanoparticles in the colloid. The results indicated that colloid PVA-Ag had higher zeta potential and better suspension.

Inspec keywords: nanoparticles; nanofabrication; visible spectra; colloids; nanocomposites; ultraviolet spectra; suspensions; electrokinetic effects; particle size; scanning electron microscopy; silver; transmission electron microscopy

Other keywords: stereoscopic structure; silver nanoparticles; UV–visible spectrophotometer; transmission electron microscope; nanosilver colloid; arc discharge method; colloid PVA-Ag; particle size; Ag; silver nanocolloid; scanning electron microscope; zeta potential

Subjects: Electromagnetic radiation spectrometry (chemical analysis); Colloids; Emulsions and suspensions; Other methods of nanofabrication; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Low-dimensional structures: growth, structure and nonelectronic properties

References

    1. 1)
      • 25. Honary, S., Zahir, F.: ‘Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1)’, Tropical J. Pharm. Res., 2013, 12, (2), pp. 255264.
    2. 2)
    3. 3)
      • 8. Zhao, R., He, J., Su, X., et al: ‘Tunable high-power Q-switched fiber laser based on BP-PVA saturable absorber’, IEEE J. Sel. Top. Quantum Electron., 2018, 24, (3), pp. 15.
    4. 4)
    5. 5)
      • 9. Qiu, S., Nai, J.G., Sun, D.K., et al: ‘Synthesis and characterization of magnetic polyvinyl alcohol (PVA) hydrogel microspheres for the embolization of blood vessel’, IEEE Trans. Biomed. Eng., 2016, 63, (4), pp. 730736.
    6. 6)
    7. 7)
      • 11. Santos, C.A., Balcão, V.M., Chaud, M.V., et al: ‘Production, stabilisation and characterisation of silver nanoparticles coated with bioactive polymers pluronic F68, PVP and PVA’, IET Nanobiotechnol., 2016, 11, (5), pp. 552556.
    8. 8)
    9. 9)
    10. 10)
      • 15. Pandit, R., Gaikwad, S., Rai, M.: ‘Biogenic fabrication of CuNPs, Cu bioconjugates and in vitro assessment of antimicrobial and antioxidant activity’, IET Nanobiotechnol., 2017, 11, (5), pp. 568575.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 20. Guo, C., Chen, B., Wang, H., et al: ‘Investigation on the stability of WSe 2-PVA saturable absorber in an all PM Q-switched fiber laser’, IEEE Photonics J., 2016, 8, (5), pp. 112.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2017.0781
Loading

Related content

content/journals/10.1049/mnl.2017.0781
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading