Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimising a nantenna array at 1550 nm band

The theoretical analysis and simulated design of a plasmonic equilateral triangular dielectric resonator nantenna fed via a 1 × 2 corporate feed network are presented. Utilising full wave electromagnetic simulation software Computer Simulation Technology (CST) Microwave Studio (MWS) and verifying results via high-frequency structure simulator, the working of the proposed nantenna at optical C-band (1.55 μm) is demonstrated and confirmed. Numerical results prove that the proposed nantenna exhibits a directivity of 9.57 dB with an impedance bandwidth of 2.58% (189–194 THz) covering the standard optical C-band transmission window. Furthermore, by selecting the appropriate orientation of the triangular dielectric resonators, the proposed nantenna structure can be tuned to operate at the higher or lower optical bands offering a threshold value of directivity and bandwidth Δf. By tuning the nantenna they achieve an increase in bandwidth of 4.96% (185.1–194.7 THz) and directivity also improves to 9.7 dB. The wideband and directive properties make the proposed nantenna attractive for a wide range of applications including broadband nanophotonics, optical sensing, optical imaging and energy harvesting applications.

References

    1. 1)
    2. 2)
    3. 3)
      • 1. King, R.W.P., Harrison, C.W.: ‘Antennas and waves: a modern approach’ (MIT Press, Cambridge, MA, 1969).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 26. Control of Radiative Processes Using Tuneable Plasmonic Nanopatch Antennas – Nano Papers (ACS Publications)’. Pubs.acs.org. N. p., 2016.
    8. 8)
    9. 9)
    10. 10)
      • 20. Sethi, W.T., Vettikalladi, H., Fathallah, H.: ‘Dielectric resonator nanoantenna at optical frequencies’. Information and Communication Technology Research (ICTRC), 2015, Abu Dhabi, 2015, pp. 132135.
    11. 11)
    12. 12)
      • 15. Lin, L., Zheng, Y.: ‘Optimizing plasmonic nanoantennas via coordinated multiple coupling’. Scientific Reports, 5, 2015.
    13. 13)
    14. 14)
      • 7. Lee, N., Morales-Jimenez, D., Lozano, A., and Heath, R.W.: ‘Spectral Efficiency of Dynamic Coordinated Beamforming: A Stochastic Geometry Approach’, in IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp. 230–241.
    15. 15)
    16. 16)
      • 19. ANSYS HFSS 2015.
    17. 17)
    18. 18)
    19. 19)
      • 8. Denkova, D.: ‘Magnetic near-field imaging of increasingly complex plasmonic antennas’. Springer theses optical characterization of plasmonic nanostructures: near-field imaging of the magnetic field of light, 2016.
    20. 20)
    21. 21)
    22. 22)
      • 3. Fujimoto, K.: ‘Small antennas’ (John Wiley & Sons, Inc., New York, 1987).
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 18. Computer Simulation Tool CST-MWS 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2016.0493
Loading

Related content

content/journals/10.1049/mnl.2016.0493
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address