access icon free Meshless analysis of bilayer graphene nanoribbon for radio frequency interconnects

Numerical analysis of a bilayer graphene nanoribbon (BLGNR) using the reproducing kernel particle method (RKPM) – a true meshless approach – is reported. Electrostatic analysis of the BLGNR is performed using the RKPM approach. Validation of the structure is executed by comparing the result with an equivalent single conductor model and shows better accordance. Radio frequency (RF) analysis of the BLGNR as the interconnect is studied using advanced design systems with the quasi-static analysis derived through the RKPM method. The simulation results in a return loss of −89.69 dB and transmission loss of −0.00028 dB at 1 THz which is suitable for RF interconnect applications.

Inspec keywords: integrated circuit interconnections; nanoribbons; radiofrequency integrated circuits; electrostatics; graphene

Other keywords: meshless analysis; reproducing kernel particle method; radiofrequency interconnects; equivalent single conductor model; bilayer graphene nanoribbon; electrostatic analysis

Subjects: Microwave integrated circuits; Metallisation and interconnection technology; Electrostatics

References

    1. 1)
      • 13. Araneo, R., Lovat, G., Burghignoli, P.: ‘Dispersion analysis of graphene nanostrip lines’. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 2012, pp. 12.
    2. 2)
      • 8. Zhao, W.-S., Yin, W.-Y.: ‘Signal integrity analysis of graphene nano-ribbon (GNR) interconnects’. IEEE Electrical Design of Advanced Packaging and Systems Symp. (EDAPS), 2012, pp. 227230.
    3. 3)
      • 16. Aluru, N.R.: ‘A point collocation method for mesh less analysis of MEMS’. Technical report, Beckman Institute UIUC, 1998.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 3. Kanthamani, S., Vahini, N.S., Raju, S., Abhaikumar, V.: ‘Quasi-static modelling of carbon nanotube interconnects for gigahertz applications’, Micro Nano Lett., 2010.
    10. 10)
    11. 11)
      • 10. Sarto, M.S., Tamburrano, A.: ‘Comparative analysis of TL models for multilayer graphene nanoribbon and multiwall carbon nanotube interconnects’. Proc. IEEE Int. Symp. Electromagnetic Compatibility, Fort Lauderdale, FL, USA, July 2010, pp. 212217.
    12. 12)
      • 2. Das, S., Bhattacharya, S.: ‘RF performance analysis of graphene nanoribbon interconnect’. IEEE Student's Tech. Symp., 2014, pp. 105110.
    13. 13)
    14. 14)
    15. 15)
      • 15. Marconcini, P.: ‘Transport simulation of armchair graphene ribbons with a generic potential in the presence of an orthogonal magnetic field nanotechnology’. IEEE Int. Conf., August 2014, pp. 543548.
    16. 16)
    17. 17)
    18. 18)
      • 5. Srivastava, N., Banerjee, K.: ‘A comparative scaling analysis of metallic and carbon nanotube interconnections for nanometer scale VLSI technologies’. Proc. VMIC, September 2004, pp. 393398.
    19. 19)
      • 7. Srivastava, N., Joshi, R.V., Banerjee, K.: ‘Carbon nanotube interconnects: implications for performance, power dissipation and thermal management’. IEDM, 2005, pp. 257260.
    20. 20)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2015.0155
Loading

Related content

content/journals/10.1049/mnl.2015.0155
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading